30 Tage kostenlos testen: Mehr Spaß am Lernen.
30 Tage kostenlos testen

Überzeugen Sie sich von der Qualität unserer Inhalte.

30 Tage kostenlos testen

Die elektrochemische Zersetzung von Wasser 10:17 min

Textversion des Videos

Transkript Die elektrochemische Zersetzung von Wasser

Hallo und ganz herzlich bekommen! In diesem Video geht es um die Elektrolyse von Wasser. Reines Wasser Sehr sauberes reines Wasser nennt man destilliertes oder entionisiertes Wasser. In ihm sind keine Salze enthalten.Gibt es darin überhaupt Ionen? Wenig, aber es gibt sie! Wasser neigt in sehr geringem Maße zur Selbstdissoziation. Man sagt auch „Autoprotolyse“: H2O + H2O ⇌ H3O+ + OH-
Zwei Wasser – Moleküle reagieren miteinander. Ein Molekül von den beiden gibt ein Proton ab und es entsteht ein Hydroxid – Ion. Das andere Molekül nimmt dieses Proton auf und es entsteht ein Oxonium – Ion (Hydronium – Ion). Das Ionenprodukt unter Raumbedingungen (298 K und 1 bar) ist sehr klein: Kw = 10-14 mol2/l2 Das bedeutet, dass das Gleichgewicht der Autoprotolyse praktisch vollständig in Richtung der undissoziierten Wasser – Teilchen verschoben ist. Dennoch sind Ladungsträger vorhanden. Und diese leiten den elektrischen Strom.
Elektrolyse Man füllt ein Gefäß mit Wasser. An den gegenüberliegenden Seiten wird eine Gleichspannung angelegt. Die negative Elektrode heißt Kathode. Zu ihr bewegen sich die Kationen. Die positive Elektrode heißt Anode. Zu ihr bewegen sich die Anionen. Nach der Ankunft der Ionen an den Elektroden finden Entladungsvorgänge statt. Diese Entladungsvorgänge bezeichnet man Elektrodenreaktionen.
Kathodenreaktion: H3O+ + e- ---> H2O + H Ein Oxonium – Ion (Hydronium – Ion) nimmt ein Elektron auf. Es entsteht ein Molekül Wasser und ein Wasserstoff – Atom. Das Wasserstoff – Atom hat ein ungepaartes Elektron. Es ist ein so genanntes Radikal und daher chemisch sehr aktiv. Bei der Kathodenreaktion paaren sich die beiden freien Elektronen zweier Wasserstoff – Atome und es entsteht ein Wasserstoff – Molekül: H + H ---> H - H
Wir multiplizieren nun die erste Teilreaktion mit 2 und addieren zu ihr die zweite Teilreaktion.
Wir erhalten: 2 H3O+ + 2 e- + H + H ---> 2 H2O + 2H + H - H Teilchen, die auf beiden Seiten sind, werden herausgestrichen: 2 H3O+ + 2 e- + H + H ---> 2 H2O + 2H + H - H Für die gesamte Kathodenreaktion ergibt sich: 2 H3O+ + 2 e- ---> 2 H2O + H - H Oder: 2 H3O+ + 2 e- ---> 2 H2O + H2 Zwei Oxonium – Ionen (Hydronium – Ionen) nehmen zwei Elektronen auf. Es entstehen zwei Wasser – Moleküle und ein Wasserstoff – Molekül. Anodenreaktion: Zur Anode wandern die aus dem Wasser gebildeten Anionen. Das sind die Hydroxid – Ionen OH-. Im ersten Reaktionsschritt wird ein Hydroxid – Ion entladen: OH- ---> OH + e- Das entstandene Teilchen OH ist hinsichtlich der Bindung und seiner Stabilität äußerst interessant. Es ist ungeladen und besitzt ein freies Elektron. Somit handelt es sich um ein reaktives Radikal. Treffen zwei solcher Hydroxyl- Radikale aufeinander, so reagieren sie weiter: HO + HO ---> HO-H + O Es entsteht ein Wasser – Molekül und ein Sauerstoff-Atom. Das Sauerstoff – Atom ist wieder ein Radikal, genauer, ein Biradikal. Zwei Sauerstoff – Atome vereinigen sich schließlich zu einem Sauerstoff – Molekül: O + O ---> O2
Wir wollen nun die Gleichungen vereinigen: Wir addieren das Vierfache der ersten Gleichung, das Doppelte der zweiten Gleichung und die dritte Gleichung: 4 OH- + 2 HO + 2 HO + O + O ---> 4 OH + 4 e- + 2 HO-H + 2 O + O2
Teilchen, die auf beiden Seiten sind, werden herausgestrichen: 4 OH- + 2 HO + 2 HO + O + O ---> 4 OH + 4 e- + 2 HO-H + 2 O + O2
Für die gesamte Anodenreaktion ergibt sich: 4 OH- ---> 4 e- + 2 HO-H + O2
Oder: 4 OH- ---> 2 H2O + O2 + 4 e- Vergleich der Elektrodenreaktionen Betrachten wir noch einmal beide Elektrodenreaktionen: Kathode: 2 H3O+ + 2 e- ---> 2 H2O + H2 Anode: 4 OH- ---> 2 H2O + O2 + 4 e- An der Kathode werden bei der Reaktion Elektronen aufgenommen. Das bedeutet, es findet eine Reduktion statt. An der Anode werden bei der Reaktion Elektronen abgegeben. Das bedeutet, es findet eine Oxidation statt. Addieren wir nun das Doppelte der Kathodenreaktion und die Anodenreaktion: 4 H3O+ + 4 e- + 4 OH- ---> 4 H2O + 2 H2 + 2 H2O + O2 + 4 e-
Nach Entfernung der vier Elektronen auf beiden Seiten ergibt das: 4 H3O+ + 4 OH- ---> 4 H2O + 2 H2 + 2 H2O + O2
Und schließlich: 4 H3O+ + 4 OH- ---> 6 H2O + 2 H2 + O2 Bei der Elektrolyse von Wasser werden Elektronen übertragen. Es handelt sich somit um eine Redoxreaktion. Zusammensetzung des Wassers Historisch und didaktisch hat die Elektrolyse des Wassers große Bedeutung. Betrachten wir noch einmal die Gesamtreaktion: 4 H3O+ + 4 OH- ---> 6 H2O + 2 H2 + O2 Man sieht, dass Wasserstoff H2 und Sauerstoff O2 immer im molaren Verhältnis von 2 : 1 gebildet werden.
Beispiel: Kathode: 1,2 l Wasserstoff werden freigesetzt. Anode: 0,6 l Wasserstoff werden freigesetzt. Auswertung: Das Volumenverhältnis beträgt 1,2 l/0,6 l = 2 : 1 Wasserstoff und Sauerstoff sind Gase. Nach dem Gesetz von Avogadro ist dann auch das molare Verhältnis 2 : 1. Ergebnis: Das Wasser – Molekül hat eine mögliche Formel von H2O. Auch ganzzahlige Vielfache sind möglich: H4O2, H6O3,H8O4, usw. Die zuletzt genannten Varianten kann man experimentell ausschließen. Zum Beispiel durch Kryoskopie. Warum werden Salze in das Elektrolysebad gegeben? Viele Salze wie Natriumsulfat dissoziieren in wässriger Lösung fast vollständig: Na2SO4 ⇌ 2 Na+ + SO42- Die gebildeten Ionen sind Ladungsträger. Durch ihre Anwesenheit wird die Elektrolysegeschwindigkeit erhöht. Achtung: Es ist wichtig, ein Salt wie Natriumsulfat zu verwenden. 1. Es liefert Ionen eines unedlen Metalls (Natrium). 2. Es liefert schwer entladbare Säurerest – Ionen (Sulfat – Ionen). Dadurch wird garantiert, dass an den Elektroden Wasserstoff und Sauerstoff entstehen. (Und nicht die Ionen des Salzes!)

Das war es auch schon wieder für   heute. Ich wünsche euch alles gute und viel Erfolg.
Tschüs

Euer André