Elektrochemisches Potential
Elektrochemisches Potential
Beschreibung Elektrochemisches Potential
Die Galvanische Zelle ist Grundlage einer jeden Batterie. Aber wie kommt eigentlich die Spannung zustande in der Batterie? Dazu schaust du dir in diesem Video die einzelnen Halbzellen des galvanischen Elementes einmal genauer an. Du wirst sehen, dass sich an der Elektrode Kationen bilden, die in Lösung gehen und damit die Elektrode negativ aufladen. In dem Video wird dir dann weiter erklärt, wie dadurch dann Spannung entsteht.
Transkript Elektrochemisches Potential
Wie kommt die Zellspannung einer galvanischen Zelle zustande? Betrachten wir dazu die Vorgänge in der Zinkhalbzelle einzeln, also ohne leitende Verbindung zur Kupferhalbzelle. Die Zinkelektrode ist aus Zinkatomen aufgebaut. Diese sind in einem Metallgitter angeordnet. An der Oberfläche der Elektrode werden einzelne Zinkatome durch Elektronenabgabe zu positiv geladenen Zinkionen oxidiert. Sie verlassen das Metallgitter. Die Ionen führen zu einer Anreicherung positiver Ladung in der Elektrolytlösung. Da die Elektronen in der Zinkelektrode zurückbleiben, lädt sie sich gleichzeitig negativ auf. Die räumliche Trennung der Ladungen führt so zu einer Potentialdifferenz. Ein Teil der Ionen wird durch elektrostatische Anziehung an der Oberfläche des Metalls festgehalten. An der Grenzfläche zwischen Elektrode und Lösung entsteht dadurch eine elektrochemische Doppelschicht aus Kationen und Elektronen. Durch die Trennung von positiver und negativer Ladung bildet sich in der Halbzelle ein spezifisches Redoxgleichgewicht. Die metallischen Atome und ihre zugehörigen Ionen nennt man daher auch Redox-Paare. In der Reaktionsgleichung steht die reduzierte Form des Redoxpaares auf der linken Seite. Die oxidierte Form auf der rechten Seite der Pfeile. Eine Verschiebung des Redox-Gleichgewichts ist in beide Richtungen möglich. Bis zur Einstellung des Gleichgewichtszustands überwiegt die Oxidation von Zink zu Zinkionen. Diese Vorgänge bauen ein elektrochemisches Potential auf. Sie lassen sich in allen Metallhalbzellen beobachten. So auch an der Kupferelektrode. Dort werden Kupferatome zu Kupferionen oxidiert. Im Vergleich zum Zink entstehen jedoch weniger Ionen, denn Kupfer hat eine geringere Tendenz Elektronen abzugeben. Dadurch wird die Kupferelektrode weniger stark negativ aufgeladen als die Zinkelektrode. Wenn man die Halbzellen verbindet führt dies zu einem Elektronenfluss von der Zink- zur Kupferelektrode.

Elektrochemische Spannungsreihe

Die Standardwasserstoffelektrode

Die elektrochemische Zersetzung von Wasser

Elektrodenreaktionen

Brennstoffzelle

Ionenwanderung in der galvanischen Zelle

Nernst-Gleichung und die Konzentrationsabhängigkeit des Elektrodenpotentials

Die Nernst-Gleichung – Einführung

pH-Abhängigkeit von Redoxpotenzialen

Elektromotorische Kraft (EMK) und Elektrodenpotentiale

Berechnung der EMK einer galvanischen Zelle

Berechnung der Konzentration über die EMK

Berechnung der EMK und freien Enthalpie einer Wasserstoff-Brennstoffzelle

Berechnung der Ladungsbewegung und Stromstärke

Berechnung der Ionenkonzentration nach Elektrolyse

Berechnung der freien Enthalpie einer gegebenen Zelle

Elektrochemisches Potential