50 % Lernmotivations-Rabatt —
Nur für kurze Zeit!

30 Tage kostenlos testen und anschließend clever sparen.

Die Standardwasserstoffelektrode 12:53 min

Textversion des Videos

Transkript Die Standardwasserstoffelektrode

Hallo und ganz herzlich willkommen. In diesem Video geht es um die Standardwasserstoffelektrode. Elektroden: Wir betrachten eine elektrochemische Elektrode, kurz Elektrode. Dabei handelt es sich um ein Metall, das in eine Salzlösung dieses Metalls eintaucht. Elektrode eins: Metallisches Zink taucht in eine Lösung mit Zinksulfat ein. Zwischen den Zinkionen und den Zinkatomen bildet sich ein elektrochemisches Gleichgewicht heraus: Zn2+ + 2e- stehen im Gleichgewicht mit Zn. Elektrode zwei: Metallisches Kupfer taucht in eine Lösung mit Kupfersulfat ein. Zwischen den Kupferionen und den Kupferatomen bildet sich ein elektrochemisches Gleichgewicht heraus: Cu2+ + 2e- stehen im Gleichgewicht mit Cu. Elektrodenpotenziale: An der Grenzschicht zwischen dem Metall und der Salzlösung bildet sich ein Elektrodenpotenzial. Man hat zu berücksichtigen: Verschiedene Elektroden eins und zwei zeigen verschiedene Potenziale: E1 und E2. Für eine isolierte Elektrode ist das Potenzial E nicht experimentell bestimmbar. Potenzialdifferenzen: Potenziale E1 und E2 isolierter Elektroden sind nicht messbar. Die Potenzialdifferenz Delta E = E2 - E1 ist messbar. Nachweis: Man schließt beide Elektroden zusammen. Wir erhalten eine galvanische Zelle, das Daniell-Element. Dafür schreibt man Cu/Cu2+//Zn2+/Zn. Im Ergebnis fließt ein Strom. Schlussfolgerung: Die Potenzialdifferenz ist gleich der elektromotorischen Kraft. Delta E = U. Standardelektrodenpotentiale: Potenziale verschiedener Elektroden heißt Standardelektrodenpotentiale. Zwei wichtige Bemerkungen: Erstens: Die Potenziale sind keine absoluten Werte, sie werden willkürlich festgelegt. Lediglich die Differenz zweier Potenziale bleibt immer gleich. Delta E = E2 - E1 = konstant. Zweitens: Die Werte beziehen sich auf Standardbedingungen, das heißt zum Beispiel für die Kupferelektrode: Konzentration c von Cu2+ = 1 mol pro Liter. Temperatur T = 298,15 Kelvin = 25 Grad Celsius. Wahl einer Bezugsgröße: Für das Daniell-Element misst man unter Standardbedingungen: Delta E = E2 - E1 = 1,10 Volt. Nun könnte man willkürlich festlegen: E1 = 0 Volt für Zn2+/Zn. Daraus ergäbe sich: E2 = 1,10 Volt für Cu2+/Cu. Man geht jedoch einen anderen Weg. Zink ist ein unedles Metall, es reagiert mit Säuren. Zn + 2H+ reagieren zu Zn2+ + H2. Die Zink-Atome werden oxidiert. Zn reagiert zu Zn2+ + 2e-. Kupfer ist ein edles Metall. Es reagiert mit Säuren nicht. Cu + 2H+ reagieren nicht zu Cu2+ + H2. Die Kupfer-Ionen werden reduziert. Cu2+ + 2e- reagieren zu Cu. Wasserstoff liegt zwischen Zink und Kupfer. 2H+ + 2e- stehen im Gleichgewicht mit H2. Reduktion und Oxidation halten sich die Waage. Daher ist es sinnvoll, das Standardelektrodenpotenzial der Wasserstoffelektrode als Bezugswert festzulegen. Die Standardwasserstoffelektrode: Die Standardwasserstoffelektrode ist die Bezugselektrode in der Elektrochemie. Das Potential dieser Elektrode wird nicht gemessen. Dennoch ist ein sorgfältiger Versuchsaufbau sehr wichtig. Die Reaktion 2H+ + 2e- stehen im Gleichgewicht zu H2 wird im Experiment verwirklicht. Man kann auch schreiben: 2H30+ + 2e- stehen im Gleichgewicht mit H2 + 2H2O. Dabei wird auf die wässerige Lösung verwiesen. Versuchsaufbau: In einem Gefäß befindet sich Salzsäure der Konzentration 1 mol pro Liter. In die Lösung taucht ein Platinblech ein. Das Blech wird umspült von gasförmigem Wasserstoff. Dabei stellt sich ein Gleichgewicht zwischen den Oxoniumionen und dem gasförmigen Wasserstoff ein. Die Elektrode wird unter Standardbedingungen betrieben, c von HCl = 1 mol pro Liter, sowie T = 298,15 Kelvin. Zusätzlich ist der Gasdruck mit P von H2 = 1,01325 bar festgelegt. Das entspricht dem Atmosphärendruck. Festlegung: Unter den genannten Bedingungen besitzt die Standardwasserstoffelektrode ein Potenzial E von 0 Volt. Standardpotentiale von Halbzellen: Wir können nun die Standardpotentiale der Elektroden aus dem Daniell-Element messen. Die Elektroden nennt man auch Halbzellen. Die Halbzelle wird mit der Wasserstoffelektrode verbunden. Die gemessene Spannung ist dann das Standardpotential E0 = U. Die hochgestellte 0 bedeutet Standardbedingungen. Wir messen: Zinkhalbzelle: 2H+/H2//Zn/Zn2+. Man erhält: E10 = -0,76 Volt. Der negative Wert bedeutet bevorzugte Elektronenabgabe. Zn reagiert zu Zn2+ + 2e-. Diese Halbzelle heißt Anode. Kupferhalbzelle: Cu/Cu2+//2H+/H2. Wir erhalten E20 = +0,34 Volt. Der positive Wert bedeutet bevorzugte Elektronenaufnahme. Cu2+ + 2e- reagieren zu Cu. Die Halbzelle hier heißt Kathode. Die elektrochemische Spannungsreihe: Das bedeutet einfach Tabellierung der Standardpotentiale. Wichtig: Man betrachtet stets die Reaktion in Richtung Elektronenaufnahme in Richtung der Reduktion. Betrachten wir einige Beispiele: Element, Reaktion und E0 in Volt. Gold +1,50, Silber +1,20, Kupfer auch noch positiv +0,34, Wasserstoff haben wir festgelegt als 0, für Eisen erhält man -0,41, für Zink -0,76 und für Calcium -2,87. Interpretation: Positive Werte: Edle Metalle reagieren nicht mit Säuren, Reduktion bevorzugt. Negative Werte: Unedle Metalle reagieren mit Säuren, Oxidation bevorzugt. Vorhersagbarkeit der Reaktion: Die Veränderung der Gibbs-Energie, freien Enthalpie G sagt, ob eine chemische Reaktion abläuft. Delta G ist kleiner als Null, die Reaktion läuft spontan ab, Delta G ist größer als Null, die Reaktion läuft nicht spontan ab, und Delta G gleich Null, es besteht ein Gleichgewicht zwischen den Edukten und Produkten. Es gibt einen Zusammenhang zwischen Delta G und E. Delta G ist gleich minus -z mal F mal E. z ist die Zahl übertragener Elektronen, F ist die Faraday-Konstante, etwa 96500 Ampere/Sekunden pro mol. Betrachten wir die Zinkhalbzelle. Zn2+ + 2e- stehen im Gleichgewicht mit Zink. E ist gleich E10 ist gleich minus 0,76 Volt und Z gleich 2. Man erhält: Delta G ist gleich +147 Kilojoule pro mol. Zinkionen werden nicht reduziert. Und nun betrachten wir die Kupferhalbzelle. Cu2+ + 2e- stehen im Gleichgewicht mit Cu. E ist gleich E20 ist gleich plus 0,34 Volt und Z gleich 2. Man erhält: Delta G ist gleich minus 66 Kilojoule pro mol. Kupferionen werden reduziert. Je positiver das Standardpotential eines Redox-Paares ist, umso höher ist seine Tendenz zur Elektronenaufnahme. Das war es erst einmal. Heute sage ich ungewohnt: „Auf Wiedersehen“. Vielleicht kann ich euch irgendwann einmal wieder helfen. Euer André.