Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Nachweise von Sulfat-, Phosphat und Nitrat-Ionen

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.2 / 5 Bewertungen
Die Autor*innen
Avatar
André Otto
Nachweise von Sulfat-, Phosphat und Nitrat-Ionen
lernst du in der 11. Klasse - 12. Klasse - 13. Klasse

Nachweise von Sulfat-, Phosphat und Nitrat-Ionen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Nachweise von Sulfat-, Phosphat und Nitrat-Ionen kannst du es wiederholen und üben.
  • Formuliere die Dissoziationsgleichungen der Säuren.

    Tipps

    Die Namen von Schwefelsäure und Phosphorsäure deuten jeweils auf eines der am Molekül beteiligten chemischen Elemente hin.

    Die Wasserstoffatome bewirken den sauren Charakter der Verbindungen. Ihre Anzahl bestimmt das Aussehen der jeweiligen Dissoziationsgleichung.

    Lösung

    Schwefelsäure

    $H_2SO_4$$\:\rightleftharpoons 2~H^+\:$$\:+\:$${SO_4}^{2-}$

    Zwei Wasserstoffatome im Säuremolekül bedeuten, dass bei der Dissoziation zwei Wasserstoffionen abgespalten werden. Entsprechend bildet sich das Sulfat-Ion mit zweifach negativer Ladung.

    Phosphorsäure

    $H_3PO_4$$\:\rightleftharpoons 3~H^+\:$$\:+\:$${PO_4}^{3-}$

    Drei Wasserstoffatome im Säuremolekül bedeuten, dass bei der Dissoziation drei Wasserstoffionen abgespalten werden. Entsprechend bildet sich das Phosphat-Ion mit dreifach negativer Ladung.

    Salpetersäure

    $HNO_3$$\:\rightleftharpoons\:$$\:H^+\:$$\:+\:$${NO_3}^-$

    Ein Wasserstoffatom im Säuremolekül bedeutet, dass bei der Dissoziation ein Wasserstoffion abgespalten wird. Entsprechend bildet sich das Nitrat-Ion mit einfach negativer Ladung.

  • Entscheide, ob eine Fällung in folgenden Beispielen funktioniert.

    Tipps

    Die meisten Salze der Salpetersäure sind leicht wasserlöslich.

    Metallionen mit kleiner Ladung, die von Elementen der Hauptgruppen abstammen, bilden häufig leicht lösliche Salze.

    Lösung

    1.$~$$Ba^{2+}\:+\:{SO_4}^{2-}$$\:\rightarrow\:$$BaSO_4\downarrow$

    Diese Reaktion ist eine Fällungsreaktion. Wenn man vorher ansäuert, kann man vermeiden, dass andere Säurerestionen wie das Carbonat-Ion ausfallen.

    2.$~$$2\:Na^+\:+\:{SO_4}^{2-}$$\:\nrightarrow\:$$Na_2SO_4\downarrow$

    Salze der Alkalimetalle (Natrium, Kalium) sind meist gut wasserlöslich. Natriumsulfat nennt man auch Glaubersalz. Es wurde viele Jahre in wässriger Lösung als Abführmittel verwendet.

    3.$~$$3\:Ag^+\:+\:{PO_4}^{3-}$$\:\rightarrow\:$$Ag_3PO_4\downarrow$

    Diese Fällungsreaktion dient dem Nachweis von Phosphat-Ionen.

    4.$~$$K^+\:+\:{NO_3}^-$$\:\nrightarrow\:$$KNO_3\downarrow$

    Schwer lösliche Nitrate gibt es fast nicht. Kaliumsalze sind ebenfalls häufig gut wasserlöslich. Kaliumnitrat ist Salpeter, genauer Kalisalpeter. Das Salz ist gut wasserlöslich und kann daher bei einer Fällung nicht ausfallen.

    5.$~$$Ca^{2+}\:+\:2\:{NO_3}^-$$\:\nrightarrow\:$$Ca(NO_3)_2\downarrow$

    Calciumnitrat ist als Nitrat gut wasserlöslich und kann somit bei einer Fällung nicht ausfallen.

    6.$~$$Fe^{3+}\:+\:{PO_4}^{3-}$$\:\rightarrow\:$$FePO_4\downarrow$

    Eisen(III)-Ionen sind ein geeignetes Reagenz auf Phosphat-Ionen.

  • Erkläre, wofür ein Ansäuern des Sulfatnachweises wichtig ist.

    Tipps

    Die störenden Ionen werden vernichtet.

    Überlege, welche der Säuren, deren Säurerestionen wir in der Lösung vermuten, unbeständig sind.

    Es gibt ein störendes Säurerestion, das nach Protonenaufnahme wieder ein (anderes) Säurerestion liefert.

    Lösung

    Der Sulfatnachweis mit Bariumchlorid kann nur eindeutig sein, wenn er angesäuert wird. Aber was bewirkt das Ansäuern?

    Durch das Ansäuern findet keine Fällung der nicht zu bestimmenden Ionen statt. Natürlich wäre es denkbar, dass man schrittweise ausfällt und so die Sulfationen bestimmt. Davon ist hier aber nicht die Rede. Die Salzsäure, welche konzentriert sein muss, sorgt dafür, dass die störenden Ionen entweder entfernt werden oder Protonen aufnehmen, so dass keine Fällung mehr stattfinden kann.

    Es bildet sich zum einen die schwache Säure des Carbonations. Sie zerfällt und ein geruchloses und erstickend wirkendes Gas wird frei: Hier wird die Entfernung von Carbonaten beschrieben. Tatsächlich geschieht:

    $2~H^+\:+\:{CO_3}^{2-}\:\longrightarrow\:H_2CO_3$

    $H_2CO_3\:\longrightarrow\:CO_2\uparrow\:H_2O$.

    Bei dem geruchlosen und erstickend wirkenden Gas handelt es sich um Kohlenstoffdioxid $CO_2$.

    Es bildet sich außerdem die schwache Säure des Sulfitions. Sie zerfällt und ein stechend riechendes Gas wird frei: Hier wird die Entfernung von Sulfiten beschrieben.

    Tatsächlich geschieht:

    $2~H^+\:+\:{SO_3}^{2-}\:\longrightarrow\:H_2SO_3$

    $H_2SO_3\:\longrightarrow\:SO_2\uparrow\:H_2O$.

    Bei dem stechend riechenden Gas handelt es sich um Schwefeldioxid $SO_2$.

    Aus den Phosphationen entstehen protonierte Ionen. Diese bilden mit den Bariumionen kein schwer lösliches Salz.

    Tatsächlich geschieht:

    $2~H^+\:+\:{PO_4}^{3-}\:\longrightarrow\:{H_2PO_4}^-$.

    Aus dem Phosphation entsteht das Dihydrogenphosphation. Durch $Ba^{2+}$-Zugabe findet keine Fällung statt.

    Salzsäure kann auch nicht jedes Salz lösen. Beim analytischen Trennungsgang von Ionen gibt es die Salzsäure-Gruppe. Dazu zählen alle Ionen, die mit Salzsäure schwer lösliche Salze bilden. Beispiele für solche Salze sind:

    Silberchlorid $AgCl$, Blei(II)-chlorid $PbCl_2$ und Quecksilber(I)-chlorid $Hg_2Cl_2$.

    Mit Schwefelsäure kann man zwar sehr gut Carbonate, Sulfite und Phosphate entfernen. Man schleppt sich jedoch Sulfate in die Lösung und somit wird der Sulfat-Nachweis unmöglich gemacht, da er immer positiv ausfallen würde.

    Mitunter führen Zugaben bestimmter Verbindungen zu einer verbesserten Löslichkeit schon vorhandener Ionen in Lösung. Das geschieht durch Komplexbildung, wie man beim Auflösen von Silberchlorid durch Ammoniak beobachtet. Liegen hingegen nur einfache Ionen vor, so führt die Zugabe neuer Ionen zu einer Verminderung der Löslichkeit der Salze in der Lösung, denn die Aufnahmefähigkeit des Lösungsmittels für lösliche Salze ist begrenzt.

  • Bestimme die Ionen, die mit Diphenylamin nachgewiesen werden können.

    Tipps

    Das nachzuweisende Ion muss ein hinreichend starkes Oxidationsmittel sein.

    Hilfreich ist die Betrachtung der Oxidationszahlen.

    Lösung

    OZ = Oxidationszahl
    OM= Oxidationsmittel

    Sulfit-Ion ${SO_3}^{2-}$: kein Nachweis
    Das Schwefelatom hat eine OZ von 4. Die höchste OZ für Schwefel ist 6. Die Oktettregel wird für alle Atome des Sulfit-Ions erfüllt. Es ist daher kein OM.

    Nitrat-Ion ${NO_3}^-$: Nachweis
    Die OZ des Stickstoffatoms ist 5. Das ist die höchste mögliche OZ. Es handelt sich um ein OM. Andere Begründung: Salpetersäure und Kaliumnitrat sind starke OM; bei Kontakt mit Stroh werden Brände ausgelöst (Salpetersäure), Kaliumnitrat ist Bestandteil des Schießpulvers.

    Carbonat-Ion ${CO_3}^{2-}$: kein Nachweis
    Carbonate sind keine OM. Wir finden sie im Kalk und im Marmor.

    Sulfid-Ion $S^{2-}$: kein Nachweis
    Gelöste Sulfide sind extrem giftig. Es sind aber keine OM. Die OZ des Schwefels beträgt hier -2. Das ist der kleinste überhaupt mögliche Wert für dieses Element.

    Bromid-Ion $Br^-$: kein Nachweis
    Natürlich ist dieses Ion kein OM. Die Begründung ist analog zu der des Sulfid-Ions.

    Nitrit-Ion ${NO_2}^-$: Nachweis
    Die OZ des Stickstoffatoms in dieser Verbindung ist für eine Oxidation noch hoch genug. Die niedrigste OZ für Stickstoff beträgt -3 (Ammoniak).

    Chlorat-Ion ${ClO_4}^-$: Nachweis
    Die Tatsache des OM lässt sich durch die höchste OZ für Chlor von 7 begründen.

  • Entscheide, welche Salze fast immer leicht löslich sind.

    Tipps

    Calciumsulfat ist das Mineral Anhydrit.

    Calciumphosphat ist das Mineral Apatit.

    Lösung

    Wenn Minerale existieren, dann heißt das, dass diese Verbindungen schlecht wasserlöslich sind. Anderenfalls würden sich die Verbindungen bei Regen auflösen und es wären keine Minerale. Somit gibt es schwer lösliche Sulfate und Phosphate.

    Neben dem Anhydrit gibt es eine weitere Abart des Calciumsulfates. Es handelt sich dabei um Gips, mit dem man zum Beispiel Fußabdrücke auf weichem Boden ausgießen kann. Die Verbindung ist schwer wasserlöslich. Denn Gips wird mit Wasser angerührt und löst sich darin nicht auf.

    Apatit, das wichtige Mineral, das Phosphat-Ionen enthält, gibt es nicht nur als Rohstoff. Es ist ein wichtiger Bestandteil der Zähne und muss dort viele Jahre Stabilität verschaffen.

    Einzig die Salze der Salpetersäure, die Nitrate, sind fast ausnahmslos gut wasserlöslich.

  • Vergleiche Benzidiniumsulfat und Bariumsulfat für die Auswaage bei der Gravimetrie.

    Tipps

    Überlege, inwieweit sich die Löslichkeiten, die Dichten und die molaren Massen der Auswaage-Verbindungen direkt auf die Genauigkeit der gravimetrischen Analyse auswirken.

    Lösung

    Löslichkeiten
    Wir wissen, welche Mengen an Bariumsulfat und Benzidiniumsulfat sich bei 18 °C in $100~ml$ Wasser lösen. Da beim Analyseweg mehr Benzidiniumsulfat verloren geht, ist für die Gravimetrie Bariumsulfat klar im Vorteil.

    Dichten
    Bariumsulfat hat eine klar größere Dichte als Benzidiniumsulfat. Eine geringere Dichte bedeutet mehr Volumen. Damit ist auch die Auswaage bequemer zu handhaben. Für die Gravimetrie ist hier Bariumsulfat klar im Nachteil.

    Molare Massen
    Wenn du richtig gerechnet hast, hast du für Bariumsulfat $233 \frac{g}{mol}$ und für Benzidiniumsulfat $280 \frac{g}{mol}$ erhalten.

    Durch die größere molare Masse ist der Fehler für die Bestimmung von Sulfat (Schwefel) für Benzidiniumsulfat kleiner. Damit ist die Verbindung leicht im Vorteil.

    Umrechnungsfaktoren auf S

    Hier musst du etwas rechnen.

    • Bariumsulfat: 0,137
    • Benzidiniumsulfat: 0,114
    Schlussfolgerungen
    Wenn sich die Auswaagen im Grammbereich belaufen, sind einige wenige Milligramm zu vernachlässigen. Damit ist die höhere Löslichkeit von Benzidiniumsulfat unerheblich. Wichtig ist die geringere Dichte. $2,8~g$ Benzidiniumsulfat besitzen ein Volumen von $2~cm^3$. Die gleiche Masse an Bariumsulfat hat ein Volumen von etwa $0,6~cm^3$. Bei kleineren Mengen an Auswaage ist Benzidiniumsulfat gegenüber Bariumsulfat im Vorteil.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.156

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.930

Lernvideos

37.078

Übungen

34.333

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden