Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Nachweise der Schwefelwasserstoff-Gruppe (1)

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 5.0 / 1 Bewertungen
Die Autor*innen
Avatar
André Otto
Nachweise der Schwefelwasserstoff-Gruppe (1)
lernst du in der 11. Klasse - 12. Klasse - 13. Klasse

Nachweise der Schwefelwasserstoff-Gruppe (1) Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Nachweise der Schwefelwasserstoff-Gruppe (1) kannst du es wiederholen und üben.
  • Nenne Kationen, die durch Fällung mit $H_2S$ bei niedrigem pH-Wert ausgefällt werden können.

    Tipps

    Hg(I) wird bereits in der Salzsäure-Gruppe abgetrennt.

    Lösung

    Zur Fällung der Kationen der Schwefelwasserstoff-Gruppe wird im einfachsten Fall gasförmiges $H_2S$ durch die Analysenlösung geleitet. Da dieses Gas sehr giftig ist muss dabei sehr sorgfältig und unter dem Abzug gearbeitet werden. Dabei fallen alle Metall-Kationen aus, deren Sulfide in dem niedrigen pH-Bereich unlöslich sind und die nicht bereits früher im Trennungsgang abgetrennt wurden.

    Die Elemente der 12. Gruppe bilden alle unlösliche Sulfide. Dennoch können nicht alle Kationen in der $H_2S$-Gruppe nachgewiesen werden. $ZnS$ ist bei niedrigen pH-Werten löslich, ${Hg_2}^{2+}$ ist bereits in der $HCl$-Gruppe abgetrennt worden und nicht mehr in der Lösung enthalten. Daher lassen sich nur $Cd^{2+}$ und $Hg^{2+}$ durch die Fällung mit $H_2S$ abtrennen.

    Auch Cobalt(II)-sulfid ist in sauren Lösungen gut löslich und kann daher nicht ausgefällt werden.

  • Beschreibe den Trennungsgang der Schwefelwasserstoffgruppe.

    Tipps

    $Cu^{2+}$-Ionen und $Cd^{2+}$-Ionen sind sich sehr ähnlich und lassen sich schwer trennen. Sie können jedoch, wenn keine übrigen Kationen mehr vorhanden sind, nebeneinander nachgewiesen werden.

    Lösung

    Bei der Trennung der fünf unterschiedlichen Kationen macht man sich unterschiedliche chemische Eigenschaften zunutze. Quecksilber(II)-sulfid hat das niedrigste Löslichkeitsprodukt und lässt sich daher leicht von den Übrigen abtrennen. Bei Blei(II)-Ionen macht man sich das geringe Löslichkeitsprodukt von Bleisulfat zunutze, die Sulfate der übrigen Kationen sind gut in Wasser löslich.

    Sowohl Cadmium als auch Kupfer bilden mit Ammoniak gut lösliche Komplexe. Daher fallen bei Behandlung mit Ammoniak-Wasser nicht die Hydroxide der beiden Ionen aus. Bismut(III)-Ionen bilden keinen stabilen Komplex mit Ammoniak, daher fällt Bismut(III)-hydroxid aus.

    $Cu^{2+}$-Ionen lassen sich neben Cadmium nachweisen, da der Komplex mit Ammoniak eine charakteristische, blaue Farbe besitzt. Diese verschwindet bei Zugabe von $CN^-$, da der stabilere, gut lösliche Cyanido-Komplex farblos ist. Der Komplex ist so stabil, dass bei erneuter Behandlung mit $H_2S$ nur das gelbe $CdS$ ausfällt.

  • Erschließe, um welche Kationen es sich handelt.

    Tipps

    Bei Metallen, die lösliche Komplexe mit Ammoniak bilden, fallen keine Hydroxide in ammoniakalischer Lösung aus.

    Lösung

    Nach Behandlung der Sulfide mit Polysulfid-Lösung bleiben einige Sulfide als Feststoffe erhalten. Von diesen ist nur das Quecksilbersulfid in Salpetersäure unlöslich. Nach Filtration kann aus der Lösung, die noch $Pb^{2+}, Bi^{3+}, Cu^{2+}$ und $Cd^{2+}$ enthalten kann, mit Schwefelsäure das $Pb^{2+}$ als Bleisulfat ausgefällt werden. Dieses lässt sich als gelbes Blei(II)-chromat nachweisen.

    In der Lösung verbleiben die löslichen Sulfate des $Bi^{3+}, Cu^{2+}$ und $Cd^{2+}$.

    In ammoniakalischer Lösung werden die Hydroxide der Metall-Kationen ausgefällt. Diese sind weiß, das Bismut(III)-sulfid ist jedoch das einzige braune Sulfid unter den betrachteten Metallen.

    Im Trennungsgang wird der alkalische pH-Wert dadurch erreicht, das Ammoniak-Wasser hinzugegeben wird. Da $Cd^{2+}$ und $Cu^{2+}$ mit Ammoniak stabile und gut lösliche Komplexe bilden, fallen die Hydroxide dieser beiden Metalle nicht aus.

  • Ermittle, welche Kationen in der Analysen-Lösung enthalten sind.

    Tipps

    Blei(II)-Ionen bilden ein gelbes, schwerlösliches Chromat.

    Lösung

    Quecksilber(II)-sulfid hat das geringste Löslichkeitsprodukt der Sulfide der Schwefelwasserstoff-Gruppe. Daher reagiert es als Einziges nicht mit der Salpetersäure. Es kann also kein $Hg^{2+}$ in der Lösung enthalten sein, dieses wäre als schwarzes $HgS$ bei der Behandlung mit Salpetersäure ungelöst geblieben.

    Blei(II)-Sulfat ist ein schwerlösliches Sulfat. Beim Eindampfen der Lösung entstehen die Sulfate der Metall-Kationen, diese lassen sich bis auf das Bleisulfat in Wasser lösen. Die $Pb^{2+}$-Ionen lassen sich als Blei(II)-chromat eindeutig nachweisen, Blei-Ionen sind also in der Lösung enthalten.

    Bismut(III)-Ionen bilden keinen gut löslichen Komplex mit Ammoniak, daher sollten sie als Bismuthydroxid ausfallen. Da kein Feststoff bei Zugabe von Ammoniak-Wasser ausfällt, ist Bismut nicht in der Lösung enthalten.

    Die Blaufärbung der Lösung bei Zugabe von Ammoniak-Wasser deutet auf das Vorhandensein von $Cu^{2+}$-Ionen hin. Die Entfärbung der Lösung bei Zugabe von Kaliumcyanid bestätigt diesen Verdacht. Da bei erneuter Einleitung von $H_2S$ kein Niederschlag zu beobachten ist, ist kein $Cd^{2+}$ in der Lösung enthalten. Dieses würde als gelber Niederschlag von $CdS$ ausfallen.

  • Gib die Eigenschaften von Kationen an, die sich in der Schwefelwasserstoff-Gruppe befinden.

    Tipps

    Das Filtrat der Salzsäure-Fällung, das für die $H_2S$-Fällung verwendet wird, ist stark sauer.

    Bei hohen $H_3O^+$-Konzentrationen ist die Bildung von $H_2S$ begünstigt, daher lösen sich die meisten Sulfide und $H_2S$ entsteht.

    Lösung

    Bevor die Fällung mit Schwefelwasserstoff durchgeführt wird, werden durch die Salzsäure-Fällung alle Kationen abgetrennt, die schwerlösliche Verbindungen mit $Cl^-$-Ionen bilden. Diese sind also nicht mehr in der Analysenlösung enthalten. Durch Einleiten von $H_2S$-Gas in die Lösung gehen $S^{2-}$-Ionen in Lösung, diese bilden mit vielen Metall-Kationen die schwerlöslichen Sulfide.

    Ein Teil der Sulfide liegt immer in gelöster Form vor, die Metall-Ionen sind also hydratisiert und $S^{2-}$-Ionen sind in Lösung. Bei niedrigen pH-Werten bilden diese $S^{2-}$-Ionen mit $H^+$-Ionen erneut $H_2S$, welches gasförmig ist und daher der Lösung entzogen wird. Da sowohl diese Reaktion als auch der Lösungsvorgang der Metallsulfide Gleichgewichtsreaktionen sind, lösen sich daher die meisten Sulfide in sauren Lösungen. In alkalischen Lösungen sind dagegen die meisten Sulfide unlöslich.

    Bei der Fällung mit Schwefelwasserstoff wird bei niedrigen pH-Werten gearbeitet, daher fallen nur einige, wenige Metallsulfide aus. Deren Löslichkeit ist so gering, dass sie schon mit einer sehr kleinen Menge an $S^{2-}$-Ionen in der Lösung ausfallen.

  • Erkläre, warum Quecksilbersulfid sich nicht durch Zugabe von Salpetersäure lösen lässt.

    Tipps

    Sulfit: ${SO_3}^-$, Sulfid: $S^{2-}$

    Lösung

    Beim Lösen von Metallsulfiden in Salpetersäure handelt es sich nicht um einen normalen Lösungsvorgang. Es handelt sich um einen Lösungsvorgang, der an eine Redoxreaktion gekoppelt ist. Auch bei schwerlöslichen Metallsalzen wie den Metallsulfiden ist oft ein geringer Teil des Salzes im Lösungsmittel gelöst, es handelt sich schließlich um schwerlösliche Metallsalze, nicht um unlösliche Salze. Dieser Lösungsvorgang ist eine Gleichgewichtsreaktion. Das heißt, gelöste Ionen und Feststoff befinden sich im Gleichgewicht zueinander. Es löst sich in jeder Sekunde die gleiche Menge an Metallsalz, wie vom gleichen Salz aus der Lösung auskristallisiert.

    Wird Salpetersäure hinzugegeben, so reagiert das im Lösungsmittel gelöste Sulfid mit dem Nitrat zu Sulfat. Die Konzentration an gelöstem $S^{2-}$ sinkt also leicht ab. Nach dem Prinzip von Le Chatelier führt dies dazu, dass nun mehr Metallsulfid in Lösung geht, als in der gleichen Zeit auskristallisiert. Die Konzentration an $S^{2-}$ in der Lösung steigt also wieder an!

    Da das Gleichgewicht der Redoxreaktion weit auf der rechten Seite liegt, wird das gelöste Sulfid vollständig in Sulfat umgesetzt. Der beschriebene Mechanismus sorgt daher dafür, dass sich das Metallsulfid vollständig löst und das Sulfid demnach vollständig in Sulfat umgesetzt wird.

    Dieser Vorgang läuft bei Quecksilber(II)-sulfid jedoch sehr langsam ab. Dieser Stoff ist nämlich so wenig löslich in Wasser, dass die $S^{2-}$-Konzentration in der Lösung sehr gering ist. Dadurch läuft auch die Redoxreaktion sehr langsam ab. Dies lässt sich ausnutzen, um $HgS$ von anderen Metallsulfiden zu trennen.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.374

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.944

Lernvideos

37.093

Übungen

34.339

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden