30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Die Neutralisationsreaktion - Bildung von Salzen 04:50 min

Textversion des Videos

Transkript Die Neutralisationsreaktion - Bildung von Salzen

Hallo! Im folgenden Video wollen wir uns mit dem Thema Neutralisation und Salzbildung beschäftigen. Sicher hast du im Alltag schon oft mit Salzen zu tun gehabt. Das bekannteste Beispiel ist wahrscheinlich Natriumchlorid, unser Kochsalz. Ich möchte dir nun zeigen wie dieses Salz entsteht und welche wichtigen Reaktionen hierbei eine Rolle spielen.

Die Entstehung von Kochsalz

Zunächst also die Entstehung von Kochsalz. Dazu schauen wir uns hier noch einmal Säuren und Basen an. Denn beide sind an der Bildung von *Salzen beteiligt. Du siehst hier die Salzsäure. Sie reagiert mit Wasser zu Oxoniumionen, welches du vielleicht auch unter Hydroniumionen kennst und Chloridionen.

Als Base siehst du nun Natronlauge. Natronlauge dissoziiert in Wasser zu Natriumionen und Hydroxidionen. Gibt man nun eine Säure und eine Base zusammen, so reagiert das Oxoniumion der Säure mit dem Hydroxidion der Base zu zwei neutralen Wassermolekülen. Daher hat die Reaktion auch ihren Namen - Neutralisationsreaktion.

Das Natriumchlorid

Zusätzlich kommt es bei dieser Reaktion aber auch zur Ausbildung des Salzes. Das Natriumkation der Base und das Chloridanion der Säure reagieren miteinander und es entsteht das Salz: Natriumchlorid. Dabei ist jedoch zu erwähnen, dass die Salze in der wässrigen Lösung meist dissoziiiert, also gelöst als Ionen vorliegen.

Erst wenn das Wasser verdampft, bildet sich ein Ionengitter aus und festes Natriumchlorid scheidet sich ab. Das kennst du vielleicht, wenn du an der salzhaltigen Nordsee baden warst. Trocknest du dich in der Sonne, spürst du das entstandene Salz auf deiner Haut. Also kann man zusammenfassend sagen: Salzsäure und Natronlauge reagieren zu Natriumchlorid und Wasser.

Reaktion zwischen Säure und Base

Bei einer Neutralisation reagieren also ganz allgemein immer eine Säure und eine Base zu Salz und Wasser. Das Salz besteht dabei immer aus dem Metallkation der Base und dem Säurerestion der Säure. Betrachten wir als weiteres Beispiel einer Neutralisation von Schwefelsäure mit Calciumhydroxid.

Die zweiprotonigen Säuren

Die Schwefelsäure ist eine zweiprotonige Säure. Das heißt, sie kann zwei Protonen abgeben. Calciumhydroxid besitzt pro Molekül zwei Hydroxidionen. Um ein Molekül Schwefelsäure zu neutralisieren, benötigt man also ein Molekül Calciumhydroxid, dabei reagieren zwei Oxoniumionen mit zwei Hydroxidionen zu Wasser.

Daneben haben wir nun noch ein zweiwertiges Calcium-Ion und ein zweiwertiges Sulfat-Anion. Daraus entsteht dann Calciumsulfat, welches du bestimmt besser als Gips kennst. Im nächsten Beispiel reagieren Schwefelsäure und Natronlauge miteinander. Pro Säure werden also wieder zwei Protonen abgeben. Die Natronlauge hat allerdings nur ein Hydroxidion pro Molekül.

Die Neutralisation

Um ein Molekül Schwefelsäure zu neutralisieren, benötigen wir also zwei Moleküle Natronlauge. Auch im Salz müssen dann also zwei Natrium-Ionen und ein Sulfation pro Molekül vorkommen. Das Salz heißt Natriumsulfat. So kann die Gesamtgleichung für die Neutralisation formuliert werden, in der zwei Moleküle Base mit einem Molekül Säure zu zwei Molekülen Wasser und einem Molekül Salz reagieren.

Zusammenfassung zur Bildung von Salzen

Du hast nun gelernt, dass sich Säuren und Basen gegenseitig neutralisieren. Dabei reagieren die Oxoniumionen aus sauren Lösungen mit den Hydroxidionen aus den basischen Lösungen zu neutralen Wassermolekülen. Neben der Neutralisation der beiden Komponenten, reagieren die Säurerestionen mit den Basekationen zu einem Salz, das in Lösung jedoch noch dissoziiert vorliegt. Erst beim Verdampfen des Wassers entsteht kristallines Salz. Tschüss und bis zum nächsten Mal!

2 Kommentare
  1. DAS VIDEO war gut erklärt hat mich aber trotzdem durcheinander gebracht lag warscheinlich am schwarzem Hintergrund

    Von Bozena Fournier, vor mehr als 2 Jahren
  2. Sehr Hilfreich

    Von Yasser Elshayeb, vor fast 3 Jahren

Die Neutralisationsreaktion - Bildung von Salzen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Die Neutralisationsreaktion - Bildung von Salzen kannst du es wiederholen und üben.

  • Benenne die Teilchen, die für die Neutralisationsreaktion verantwortlich sind.

    Tipps

    Überlege dir, aus welchen Teilchen Säuren und Basen bestehen.

    Lösung

    An einer Neutralisation sind immer Säuren und Basen beteiligt. Aus der sauren Säure und der basischen Base wird neutrales Wasser und ein Salz.

    Überlege dir einmal, aus was Säuren und Basen jeweils bestehen.

    Säuren reagieren mit Wasser zu Oxonium-Ionen und Säurerest-Ionen. Oxonium-Ionen kennst du vielleicht auch als Hydronium-Ionen. Das ist nur ein anderer Name für die gleichen Ionen: $H_3O^+$

    Basen dissoziieren in Wasser zu Hydroxid-Ionen ($OH^-$) und Metallkationen.

    Bei einer Neutralisationsreaktion reagieren nun die Oxonium-Ionen und die Hydroxid-Ionen miteinander unter Bildung von Wasser.

    $H_3O^+ + OH^- \rightarrow 2~H_2O$

    Übrigens ist eine Neutralisation eine exotherme Reaktion.

  • Bestimme, was bei der Neutralisationsreaktion entsteht.

    Tipps

    Es reagieren Oxonium-Ionen und Hydroxid-Ionen miteinander.

    Lösung

    Bei einer Neutralisation reagieren immer Säuren und Basen miteinander. Überlege dir einmal, aus was Säuren und Basen jeweils bestehen. Säuren reagieren mit Wasser zu Oxonium-Ionen und Säurerest-Ionen. Oxonium-Ionen kennst du vielleicht auch als Hydronium-Ionen: $H_3O^+$ . Basen dissoziieren in Wasser zu Hydroxid-Ionen ($OH^-$) und Metallkationen. Bei einer Neutralisationsreaktion reagieren also die Oxonium-Ionen und die Hydroxid-Ionen miteinander zu Wasser. Die Säurerest-Ionen und die Metallkationen der Basen reagieren zu einem Salz.

    $Säure + Base \rightarrow Salz + Wasser$

  • Stelle die Entstehung von Kochsalz in einer Reaktion dar.

    Tipps

    Überlege dir, welche Teilchen bei einer Neutralisation miteinander reagieren und welche nicht.

    Lösung

    An einer Neutralisation sind immer Säuren und Basen beteiligt. Aus der sauren Säure und der basischen Base wird neutrales Wasser und ein Salz. Säuren reagieren mit Wasser zu Oxonium-Ionen und Säurerest-Ionen. Oxonium-Ionen kennst du vielleicht auch als Hydronium-Ionen. Also reagiert $HCl$ mit Wasser zu $H_3O^+$ und dem Säurerest-Ion $Cl^-$. Basen dissoziieren in Wasser zu Hydroxid-Ionen ($OH^-$) und Metallkationen. In diesem Fall ist dies ein Natriumion.

    Zusammengefasst kann man also folgende Reaktionsgleichung aufstellen: $HCl + NaOH \rightarrow NaCl + H_2O$

  • Überlege, wo eine Neutralisation im alltäglichen Leben angewendet werden kann.

    Tipps

    Überlege einmal, wo es sinnvoll sein kann, dass Säuren oder Basen neutralisiert werden.

    Lösung

    In industriellen Prozessen entstehen saure oder basische Abwässer, die in Flüsse, Seen und Meere eingeleitet werden. Da dies die dort vorhandenen Lebewesen stark schädigt und sogar abtötet, müssen diese Abwässer vor dem Einleiten in die Gewässer weitgehend neutralisiert werden. Und auch wenn bei der Neutralisation ein Salz entsteht, so erhöht sich der Salzgehalt in den Gewässern kaum merklich. Eine noch bessere Methode wäre die Aufbereitung und Wiederverwendung solcher Lösungen. Auch in Spülmaschinen laufen Neutralisationen ab. Die pulverförmigen Geschirrreiniger bzw. Tabs von Geschirrspülmaschinen enthalten nämlich Basen, die zum Reinigen von fetthaltigen Anhaftungen benötigt werden. Sie verseifen die vorhandenen Fettsäuren in den Fettablagerungen in einem ersten Reinigungsgang. Allerdings müssen nicht benötigte, also überschüssige Basen, anschließend neutralisiert werden. Dazu dient der anschließende Klarspülgang. Ein Mangel an Klarspüler macht sich zum Beispiel als weißer Belag auf Gläsern und Geschirr bemerkbar. Klarspüler enthält daher meist Zitronensäure, die für Neutralisationen der alkalischen Ionen sorgt.

  • Beschreibe einen Reaktionsweg, um Kaliumiodid zu erhalten.

    Tipps

    Du benötigst eine Säure mit entsprechendem Säurerest-Ion und eine Base mit entsprechendem Metallkation.

    Lösung

    Kaliumiodid ist ein Salz, welches bei einer Neutralisation entsteht. Wie du in diesem Video gelernt hast, gehört zu einer Neutralisation immer eine Säure, die mit einer Base reagiert. Eine Säure gibt in Reaktion mit Wasser ein Proton ab und reagiert zu Oxonium-Ionen und Säurerest-Ionen. In diesem Fall ist die einzige Säure, die zur Auswahl steht, Iodwasserstoff $HI$. Sie kann ein Proton abgeben. Übrig bleibt das Iod-Anion $I^-$. Die passende Base für unsere Reaktion ist Kaliumhydroxid $KOH$. Kaliumhydroxid dissoziiert in wässriger Lösung zum basischen Hydroxid-Ion $OH^-$ und einem Kalium-Kation $K^+$.

    Die richtige Neutralisationsreaktion zu Kaliumiodid lautet also:

    $ HI + KOH \rightarrow KI + H_2O$

  • Betimme Möglichkeiten, wie man eine Neutralisation sichtbar machen kann.

    Tipps

    Überlege, welche Eigenschaften bei einer Neutralisation eine Rolle spielen.

    Säuren und Basen besitzen bei Zugabe von einem Indikator unterschiedliche Farben.

    Lösung

    Bei einer Neutralisation wird eine Säure mit Hilfe einer Base oder umgekehrt neutralisiert. Oxonium-Ionen und Hydroxid-Ionen reagieren dabei miteinander zu neutralem Wasser. Den pH-Wert, also den Säuregrad der Lösung, kann man am besten mit einem entsprechenden Indikator überprüfen. Säuren, in die man einen Indikator gegeben hat, haben eine andere Farbe als Basen. Gibt man am Anfang einer Neutralisation also schon einen Indikator in die Lösung, verändert sich die Farbe der Lösung. Lässt man die Reaktion nun langsam ablaufen, d.h. man gibt tropfenweise Base zu der Säure oder umgekehrt dazu, zeigt der Indikator mit einem Farbumschlag, wann die Lösung neutral ist.

    Obwohl eine Neutralisation eine exotherme Reaktion ist, kann man durch das Schmelzen vom Eisbad nichts abmessen. Ein fluoreszierender Stoff ist ein Stoff, dessen Leuchten nach Beendigung der Bestrahlung rasch aufhört, weshalb es nicht sehr viel Sinn macht, diesen Stoff zu einer Neutralisationsreaktion dazuzugeben, noch dazu im Dunkeln. Und weil die Reaktion sowieso schon in wässriger Lösung stattfindet, kann man das Volumen des reinen Wassers schwer messen.