30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Säure-Base-Definitionen 06:21 min

Textversion des Videos

Transkript Säure-Base-Definitionen

Guten Tag und Herzlich Willkommen! In diesem Video geht es um Säure-Base-Definitionen. Der Film gehört zum Thema Säuren und Basen. Als Vorkenntnisse solltet ihr die Videos über Salzbildung gesehen haben. Ziel des Filmes ist es, euch grundlegende Vorstellungen über Säuren und Basen zu vermitteln. Der Film ist vier Abschnitte untergliedert: 1. Dissoziation, 2.Brönsted-Definition, 3.Protolyse und 4.Holzverbrennung. 1.Dissoziation. Säuren und Basen ergeben zusammen mit Wasser wässrige Lösungen. Diese wässrigen Lösungen leiten den elektrischen Strom. Folglich müssen sie Ladungsträger enthalten. Diese Ladungsträger sind geladene Teilchen, Ionen. Den Zerfall der Säuren oder Basen unter dem Einfluss von Wasser zu Ionen bezeichnet man als Dissoziation. Nehmen wir als Beispiel für eine Säure Chlorwasserstoff. Ein Molekül HCl dissoziiert unter dem Einfluss von Wasser in 1 einfach positiv geladenes hydratisiertes Wasserstoff-Ion und 1 einfach negativ geladenes hydratisiertes Chlorid-Ion. Die wässrige Lösung des Chlorwasserstoffs sind die Ionen im Wasser. Man bezeichnet diese Lösung als Salzsäure. Wir wollen die Ionen noch schnell notieren. Es bilden sich Wasserstoff-Ionen und Chlorid-Ionen. Als Beispiel für eine Base wählen wir Natriumhydroxid. Ein Teilchen Natriumhydroxid dissoziiert unter dem Einfluss von Wasser in 1 einfach positiv geladenes hydratisiertes Natrium-Ion und in 1 einfach negativ geladenes hydratisiertes Hydroxid-Ion. Die wässrige Lösung des Natriumhydroxids, das heißt, die Ionen in wässriger Lösung bezeichnet man als Natronlauge. Wir notieren: Es bilden sich Natrium-Ionen und Hydroxid-Ionen. Wässrige Lösungen von Säuren und Basen bezeichnet man als Elektrolyte. Sie sind in der Lage den elektrischen Strom zu leiten. 2.Brönsted-Definition. Wir haben in Abschnitt 1 gelernt, dass Säuren unter dem Einfluss von Wasser H+ Ionen, Protonen, liefern, während Basen unter den gleichen Bedingungen Hydroxid-Ionen, OH- Ionen, bilden. Für die Erklärung der Neutralisationsreaktion reicht diese Definition von Säuren und Basen aus. Es gibt aber auch Fälle, wo sie an ihre Grenzen stößt. Das klassische Beispiel dafür ist die Reaktion von NH3, Amoniak, mit H20 Wasser. Im Ergebnis entsteht NH4+, ein Amonium-Ion. Außerdem bildet sich OH-, ein Hydroxid-Ion. Wie lässt sich erklären dass Amoniak, NH3, in wässriger Lösung basisch reagiert? Eine Erklärung dafür fand Brönsted. Die erweiterte Säure-Base-Definition nach Brönsted lautet: Säuren sind Protonendonatoren. Basen sind Protonenakzeptoren. Die erweiterte Definition schließt die Ursprüngliche in sich ein. Damit kann die ursprüngliche Definition geschlossen werden. 3.Protolyse. Bei chemischen Reaktionen gibt es keine reinen Wasserstoff-Ionen, keine reinen Protonen. Siehe auch das Video: Das nackte Proton. Es gibt jedoch eine Vielzahl von Reaktionen mit Protonenübergang. Diese werden als Protolyse bezeichnet. Als Beispiel hierfür möchte ich eine einfache, aber wichtige Protolyse, die Protolyse des Wassers anführen. 2 Wassermoleküle reagieren miteinander und es entsteht ein Hydronium-Ion und ein Hydroxid-Ion. Zwischen den Wassermolekülen findet die Übertragung eines Protons statt. Wir merken uns: Das neu Entstandene positiv geladenen Ion H3O+ heißt Hydronium-Ion. Das Hydronium-Ion, H3O+, interagiert mit dem Wasser und wird dadurch hydratisiert. Es bilden sich größere Teilchen. Eines der wichtigsten Gebilde ist dabei das Ion H9O4+. Dieses besitzt Tetraederstruktur. 4.Holzverbrennung. Ihr werdet euch fragen: Was hat Holzverbrennung mit Säuren und Basen zu tun? Nun wartet es ab. Wir starten mit neutralem organischen Material, zum Beispiel Holz. Holz wird verbrannt. Dabei wird Sauerstoff verbraucht. Es bildet sich ein Gas und ein Feststoff, Asche entsteht. Das Gas ist zu großen Teilen Kohlenstoffdioxid CO2. Die Asche besteht hauptanteilig aus Kaliumoxid K2O. Versetzt man das Gas Kohlenstoffdioxid mit Wasser, so bildet sich eine Säure, Kohlensäure. Der Feststoff liefert mit Wasser Kaliumhydroxid. Vereinigt man beiden Lösungen, die Säure und die Base, so setzt Neutralisation ein. Es entsteht ein Salz und Wasser. Das Salz ist Kaliumcarbonat, Pottasche. Salz und Wasser ergeben zusammen eine neutrale Reaktion. Wir sind bei neutral gestartet und wieder bei neutral angelangt. Ich danke für die Aufmerksamkeit. Alles Gute! Auf Wiedersehen!

17 Kommentare
  1. Hallo Carrero,

    das Wort Oxid wird allgemeinsprachlich auch „Oxyd“ genannt. Sehr lange wurde es in Deutschland auch als „Oxüd“ ausgesprochen. Es wurde später dem englischen Oxid angeglichen.

    Liebe Grüße aus der Redaktion.

    Von Karsten Schedemann, vor 4 Monaten
  2. Das Ganze war ja gut erklärt, aber wieso sagen sie immer "Oxyd" oder "Oxüd". Man spricht das so aus wie es geschrieben wird: Oxid!! i!!!!!! Betonung auf i... Tut mir leid, aber das hat mich sehr gestört.

    Von Carrero, vor 4 Monaten
  3. "Zu dem Thema der Dissoziation: Warum ist H positiv geladen und Cl negativ? Woran erkenne ich das?"

    Das Wasserstoff - Atom H und das Chlor - Atom Cl bilden eine kovalente Bindung aus und es entsteht ein Molekül Chlorwasserstoff H - Cl. Im Vergleich zu den beiden isolierten Atomen haben diese im Molekül Anteil am bindenden Elektronenpaar. Das Wasserstoff - Atom verfügt somit über zwei Valenzelektronen (Außenelektronen), das Chloratom über acht. Somit erreichen sie die elektronischen Edelgaskonfigurationen von Helium bzw. Argon und sind stabilisiert.
    Da Chlor elektronegativer als Wasserstoff ist (Elektronegativität von 3,0 gegenüber 2,1) ist das bindendende Elektronenpaar im Chlorwasserstoff - Molekül in Richtung des Chlor - Atoms verschoben. Es erhält einen Elektronenüberschuss und daher eine negative Partialladung. Die vom Betrag her gleiche positive Ladung entsteht am Wasserstoff - Atom.
    Somit ist die Dissoziation im H - Cl - Molekül vorgebildet. Allerdings ist die Energie für die Ionisierung in der Gasphase immer noch gewaltig. 1373 kJ/mol. Die Hydratisierung des Protons und des Chlorid - Ions durch Wasser kompensieren diese große Energiemenge vollständig.
    Alles Gute

    Von André Otto, vor mehr als 2 Jahren
  4. Zu dem Thema der Dissoziation: Warum ist H positiv geladen und Cl negativ? Woran erkenne ich das?

    Mfg

    Von Sophieelea, vor mehr als 2 Jahren
  5. Hat mir beim Test geholfen DANKE

    Von Julian H., vor mehr als 2 Jahren
  1. "Ich versteh den letzten teil mit der holzverbrennung nicht. Also das mit der säure und der base verstehe ich, aber leider verstehe ich nicht die neutralisation und das produkt davon, denn ich weiß nicht wovon es hergeleitet worden ist.

    Hoffe jemand kann es kurz erklären"

    Es tut mir leid, wenn ich nach langer Zeit irgendwelche Probleme unerledigt vorfinde.
    Aber vielleicht haben andere die gleiche Frage.
    Holz enthält hauptsächlich die chemischen Elemente Kohlenstoff und Wasserstoff. Wird Holz verbrannt, entstehen die Oxide CO2 und H2O. Das letztere, Wasser, ist weder Säure noch Base. Interessanter ist Kohlenstoffdioxid CO2, da es in Wasser sauer reagiert:
    CO2 + H2O ---> H2CO3 (Kohlensäure)
    Holz enthält zudem Metall - Ionen. Man findet sie nach Verbrennung als Oxide in der Asche. Ein Beispiel ist Kaliumoxid, es reagiert mit Wasser und liefert Kaliumhydroxid, eine starke Base:
    K2O + H2O ---> 2 KOH
    Die entstandenen Säure und Base liefern das Salz Pottasche:
    H2CO3 + 2 KOH -----> K2CO3 + 2 H2O
    Alles Gute

    Von André Otto, vor mehr als 3 Jahren
  2. Ich fand den Film sehr gut. Logisch aufgebaut und einfacher als im DUDEN.Basiswissen erklärt.
    Danke.

    Von Ru Kroker, vor mehr als 3 Jahren
  3. Ich versteh den letzten teil mit der holzverbrennung nicht. Also das mit der säure und der base verstehe ich, aber leider verstehe ich nicht die neutralisation und das produkt davon, denn ich weiß nicht wovon es hergeleitet worden ist.

    Hoffe jemand kann es kurz erklären

    Von Saramaggi, vor mehr als 4 Jahren
  4. Hallo Sant Gibs,
    ich weiß nicht, ob ich das gesagt habe.
    1. Säuren sind generell nicht ungefährlich. Prortonen H+ bzw. Oxonium - Ionen H3O+ zersetzen Proteine (Schleimhaut, Haut).
    2. Natürlich sind die Säuren gefährlicher, die stark sind. Sie dissoziieren praktisch vollständig: Salzsäure, Bromwasserstoffsäure u. a. Kohlensäure ist schwach und ungefährlich.
    3. Ameisensäure und Essigsäure sind schwach. Aber sie verätzen die Haut. Schuld daran sind nicht die Protonen H+ sondern die Säurerest - Ionen HCOO- (Formiat) und CH3COO- (Acetat).
    4. Es gibt auch Säuren, die starke Oxidationsmittel sind. Salpetersäure HNO3 kann Stroh oder Papier zum Brennen bilden.
    5, Blausäure HCN und Schwefelwasserstoffsäure H2S sind sehr schwache Säuren und SEHR GIFTIG. Der Grund dafür sind die Säurerest - Ionen CN- (Cyanid) und Sulfid S2-. Sie sind gute Komplexbildner und binden das Hämoglobin des Blutes besser als molekularer Sauerstoff.
    6. Konzentrierte Schwefelsäure ist gefährlich, weil sie stark hygroskopisch ist. Sie entzieht den Proteinen Wasser.
    Übrigens: Phosphorsäure ist eine mittelstarke Säure. Wir trinken sie verdünnt in der Cola.
    Alles Gute

    Von André Otto, vor mehr als 4 Jahren
  5. André, kannst du mir eine antwort dazu geben?

    >>Bei sauren Lösungen gibt es große Unterschiede in ihrer Gefährlichkeit. Woran könnte das liegen?<<

    Danke im vorraus

    Von Exeso, vor mehr als 4 Jahren
  6. Ich habe eine Reihe Säuren gedreht. Frontal, also, wo man mich sieht. In einem Film zeige ich wichtige Reaktionen.

    Alles Gute

    Von André Otto, vor mehr als 4 Jahren
  7. Welche Eigenschaften haben Säuren?

    Von Exeso, vor mehr als 4 Jahren
  8. "Danke, hat mir geholfen!" unter meinem Bild kann man klicken. Trotz breiten Lobes wird das seltsamerweise meist übersehen.
    Danke und alles Gute

    Von André Otto, vor mehr als 6 Jahren
  9. wäre schön wenn die videos like buttons hätten.

    Danke für das Video

    Von Mehmed, vor mehr als 6 Jahren
  10. sehr schön :)

    Von Christian O., vor mehr als 6 Jahren
  11. Liebe Anabatta,

    ein solches Video mache ich gerne. Voraussetzung dafür ist, dass du diese Bitte an Manuela oder an sofatutor allgemein anträgst. Du kannst natürlich auch anrufen.

    Danke für dein Interesse und alles Gute

    André Otto

    Von André Otto, vor mehr als 7 Jahren
  12. ich finde das viedeo gut , aber es wäre besser gewesen wenn er etwas mehr über brönsted erklärt hätte ^^ wie kam er da zu usw..^^

    Von Anabatta, vor mehr als 7 Jahren
Mehr Kommentare

Säure-Base-Definitionen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Säure-Base-Definitionen kannst du es wiederholen und üben.

  • Beschreibe die Dissoziation von Säuren und Basen in Wasser.

    Tipps

    Säuren und Basen zerfallen (dissoziieren), wie Salze auch, in Wasser, in ihre Kationen und ihre Anionen.

    Lösung

    Säuren und Basen dissoziieren in Wasser. Betrachtet man nun den Fall, dass man festes NaOH in Wasser gibt, so wird dieses in seine Kationen und Anionen zerfallen. In diesem Fall sind das das Natrium-Ion ( $Na^+$) und das Hydroxid-Ion ($OH^-$). Diese geladenen Teilchen nennt man Ladungsträger und sie sind dafür verantwortlich, dass elektrischer Strom geleitet wird.

  • Definiere Säuren und Basen nach Brönsted.

    Tipps

    Was nimmt eine Brönsted-Base auf?

    Was macht die Schwefelsäure zur Säure?

    Lösung

    Brönsted-Basen sind Protonenakzeptoren und Brönsted-Säuren sind Protonendonatoren. Damit erweitert Brönsted die bisherige Definition von Säuren und Basen, ohne ihr zu widersprechen. Der Ammoniak wird bei der Reaktion mit Wasser zum Ammonium-Ionen. Hierfür muss der Ammoniak ein Proton aufnehmen. Ammoniak ist damit also eine Brönsted-Base.

  • Formuliere folgende Reaktionsgleichungen vollständig.

    Tipps

    Metalloxide bilden mit Wasser Basen, Nichtmetalloxide Säuren.

    Lösung

    Reagieren Nichtmetalloxide mit Wasser, so entstehen Säuren. Wenn Metalloxide mit Wasser reagieren, entstehen Basen. Wenn z.B. Holz verbrennt, entsteht Kohlenstoffdioxid und Asche (bestehend aus Kaliumoxid). Reagieren diese beiden Verbindungen mit Wasser, entsteht aus dem Kohelnstoffdioxid Kohlensäure und aus dem Kaliumoxid die Base Kaliumhydroxid. Säuren und Basen folgen bei einer gemeinsamen Reaktion der allgemeinen Gleichung:

    • Säure + Base$\rightarrow$ Salz + Wasser
    Im Videobeispiel reagieren hier $2~KOH + H_2CO_3 \rightarrow K_2CO_3 + 2~H_2O$.

  • Beschreibe die Autoprotolyse der Schwefelsäure.

    Tipps

    Reagieren 2 Moleküle unter Protolyse, so findet ein Protonenübergang statt.

    Wende den Protonenübergang auf zwei Moleküle Schwefelsäure an.

    Lösung

    Auf dem Bild ist ein Indikator zu sehen. Gibt man den Indikator in eine wässrige Lösung, ändert sich die Farbe des Indikators dem pH-Wert entsprechend. Der pH-Wert ist dabei ein Maß für die Konzentration der $H_3O^+$-Ionen in der Lösung.

    Nicht nur Wasser unterliegt der Autoprotolyse. Auch andere Verbindungen können gegenseitig Protonen aufnehmen und abgeben. Gegeben sei eine allgemeine Verbindung der Form $HR$. Reagieren nun 2 Moleküle dieser Verbindung, lautet die Reaktionsgleichung: $2~HR$ $\rightleftarrows$ $R^-$ + $H_2R^+$ Dabei entstehen ein Kation und ein Anion; diese Ladungsträger sind dafür verantwortlich, dass eine reine Flüssigkeit den elektrischen Strom leitet. Auch Schwefelsäure unterliegt diesem Prozess.

  • Bestimme die Säuren und Basen nach Brönsted.

    Tipps

    Eine Brönsted-Säure ist ein Protonendonator.

    Lösung

    Brönsted-Säuren sind Protonendonatoren; Brönsted-Basen sind Protonenakzeptoren. Bei der Reaktion mit Wasser geben $HCl$ , die $H_2SO_4$ und die $H_2CO_3$ die Protonen ab.

    • $HCl + H_2O \rightarrow H_3O^+ + Cl^-$
    • $H_2SO_4 + 2~ H_2O \rightarrow 2~ H_3O^+ + {SO_4}^{2-}$
    • $H_2CO_3 + 2~ H_2O \rightarrow 2~ H_3O^+ + {CO_3}^{2-}$
    Auch hilft es sich den Namen der Verbindung zu vergegenwärtigen. Sie lauten Salzsäure, Schwefelsäure und Kohlensäure. Betrachtet man nun die Basen, so gilt für alle, dass sie Protonen aufnehmen. Reagieren sie mit Wasser, nehmen sie ein Proton vom Wasser auf, wobei ein Hydroxidion entsteht.
    • $ NH_3 + H_2O \rightarrow {NH_4}^+ + OH^-$

  • Bestimme die Reaktionsgleichungen zwischen folgenden Oxiden und Wasser.

    Tipps

    Saurer Regen ist die Folge der Reaktion eines Oxids mit Wasser.

    Bei Reaktionsgleichungen müssen auf der Eduktseite genauso viele Atome einer Sorte auftauchen wie auf der Produktseite.

    Lösung

    Metall- und Nichtmetalloxide gehen Reaktionen mit Wasser ein. Man ,,addiert" zu der Summerformel des Oxids also formal das Wasser. Dabei ist dann zu sehen, dass die Metalloxide zu Metallhydroxiden werden, also eine Brönsted-Base entsteht. Die Nichtmetalloxide reagieren ähnlich, nur dass bei deren Reaktion eine Säure entsteht. Der saure Regen ist zum Beispiel ein Produkt der Reaktion von $SO_3$ mit $H_2O$ : Dabei bildet sich $H_2SO_4$, die Schwefelsäure. Die Reaktion: Nicht-Metalloxid + Wasser $\rightarrow$ Säure lässt sich auch anders herum formulieren. So lassen sich aus sauerstoffhaltigen Säuren unter Einwirkung von wasserentziehenden Mitteln deren Oxide austrieben, diese Oxide kann man auch als Säureanhydride bezeichnen. Lässt man zum Beispiel konzentrierte Schwefelsäure auf die Salze der Perchlorsäure ($HClO_4$) einwirken, so steigt ein gelber Dampf auf ($Cl_2O_7$).