Katalysatoren – Definition
Durch die Verwendung eines Katalysators kann die Reaktionsgeschwindigkeit einer chemischen Reaktion erhöht werden.
Katalysatoren sind chemische Stoffe, die einer Reaktion hinzugefügt werden, um die Aktivierungsenergie herabzusetzen und somit die Reaktionsgeschwindigkeit zu erhöhen.
Der Katalysator hat jedoch keinen Einfluss auf das chemische Gleichgewicht, d. h. die Ausbeute an Produkten erhöht sich nicht, und er selbst wird bei einer Reaktion nicht verbraucht. Wir unterscheiden zwischen homogenen Katalysatoren, bei denen sich der Katalysator in derselben Phase (fest, flüssig, gasförmig, gelöst, …) wie die Ausgangsstoffe (Edukte) befindet, und heterogenen Katalysatoren, bei denen Katalysator und Edukte in unterschiedlichen Phasen vorliegen.
Katalysatoren – Eigenschaften
Es gibt viele verschiedene Stoffe, die als Katalysatoren für bestimmte Reaktionen verwendet werden können. Die wichtigsten Eigenschaften von Katalysatoren wollen wir uns jetzt ansehen:
- Katalysatoren erhöhen die Reaktionsgeschwindigkeit einer bestimmten chemischen Reaktion, indem sie die Aktivierungsenergie herabsetzen.
- Katalysatoren wirken meist spezifisch, d. h. ein ganz bestimmter Katalysator wird zur Beschleunigung einer ganz bestimmten Reaktion eingesetzt.
- Katalysatoren können selektiv wirken, d. h. sie sorgen dafür, dass ein bestimmtes Produkt (von mehreren Reaktionsprodukten) bevorzugt gebildet wird.
- Katalysatoren werden durch die Reaktion nicht verändert, d. h. sie liegen am Ende wieder im gleichen Zustand vor wie vor der Reaktion.
- Es gibt auch negative Katalysatoren. Ein negativer Katalysator verlangsamt die Reaktion, die Aktivierungsenergie wird also erhöht.
- Es werden homogene und heterogene Katalysatoren unterschieden. Ein homogener Katalysator liegt im gleichen Aggregatzustand vor wie die Edukte der jeweiligen Reaktion. Eine heterogener Katalysator liegt hingegen in einem anderen Aggregatzustand vor als die Edukte.
Schlaue Idee
Beim Backen von Brot und Kuchen spielen Hefe und andere Zutaten als Katalysatoren eine Rolle. Sie beschleunigen chemische Reaktionen, die den Teig aufgehen lassen und ihm die gewünschte Textur verleihen.
Katalysatoren – Wirkungsweise
Katalysatoren erhöhen die Reaktionsgeschwindigkeit einer chemischen Reaktion, d. h. sie sorgen dafür, dass diese schneller abläuft. Dies geschieht, indem der Katalysator die Aktivierungsenergie der Reaktion herabsetzt. Es wird also weniger Energie benötigt, um die Reaktion in Gang zu setzen. So kann beispielsweise eine Reaktion, die normalerweise nur bei erhöhten Temperaturen ablaufen würde, durch das Hinzufügen eines Katalysators bereits bei Raumtemperatur ablaufen.
Wie das genau funktioniert, sehen wir uns im Folgenden noch genauer an.
Katalysatoren – Chemie der Katalyse
Wenn eine chemische Reaktion durch Hinzunahme eines Katalysator beschleunigt wird, spricht man von einer katalytischen Reaktion oder einfach Katalyse.
Nehmen wir eine allgemein formulierte chemische Reaktion als Beispiel, bei der aus den Edukten $\ce{A}$ und $\ce{B}$ eine chemische Verbindung $\ce{AB}$ gebildet wird:
$\ce{A + B -> AB}$
Diese Reaktion soll nun mithilfe eines Katalysators $\ce{\color{red}{K}}$ beschleunigt werden. Dieser nimmt an der Reaktion teil, indem er beispielsweise mit dem Stoff $\ce{A}$ einen Übergangszustand $\ce{A\color{red}{K}}$ bildet:
$\ce{A + \color{red}{K} -> A\color{red}{K}}$
Der Übergangszustand $\ce{A\color{red}{K}}$ reagiert dann weiter mit Stoff $\ce{B}$ und es entsteht das gewünschte Reaktionsprodukt $\ce{AB}$:
$\ce{A\color{red}{K} + B -> AB + \color{red}{K}}$
Am Ende liegt der Katalysator $\ce{\color{red}{K}}$ also wieder im Ausgangszustand vor, obwohl er an der Reaktion teilgenommen hat. Betrachten wir noch einmal die beiden Reaktionsschritte zusammengefasst in einer Zeile:
$\ce{A + \color{red}{K} + B -> A\color{red}{K} + B -> AB + \color{red}{K}}$
Die Katalyse, also die Beteiligung des Katalysators $\ce{\color{red}{K}}$ an der Reaktion, bringt eine erhöhte Reaktionsgeschwindigkeit mit sich, da die Aktivierungsenergie durch die Bildung des Übergangszustandes $\ce{A\color{red}{K}}$ insgesamt herabgesetzt wird.
Warum dies energietisch günstig ist, also zu einer Energieersparnis im Vergleich zur Reaktion ohne Katalysator führt, ist allerdings aus der Reaktionsgleichung allein nicht wirklich ersichtlich. Um das besser zu verstehen, müssen wir uns den Verlauf der Reaktion anhand eines Energiediagramms ansehen.
Hier ist die freie Enthalpie der Edukte (Reaktanden) und Produkte über den zeitlichen Reaktionsverlauf dargestellt. Damit ist im Wesentlichen die chemische Energie gemeint, die in den Stoffen steckt. Die Reaktanden (auf der linken Seite, also zu Beginn der Reaktion) liegen energetisch höher als die Produkte (auf der rechten Seite, also am Ende der Reaktion). Das bedeutet, grundsätzlich wird durch die Reaktion Energie freigesetzt. Allerdings muss zuerst eine bestimmte Energiemenge zugeführt werden, damit die Reaktion in Gang kommt – das ist die Aktivierungsenergie. Sie ist als hügelartige Steigung im Diagramm zu erkennen, wobei mit $E_\text{a}$ der Betrag der Energiemenge markiert ist, die jeweils zugeführt werden muss.
Die beiden Kurven im Diagramm kennzeichnen den Energieverlauf einmal ohne Katalysator $\left( \text{\color{blue}{blau}} \right)$ und einmal mit Katalysator $\left( \text{\color{red}{rot}} \right)$. Die Aktivierungsenergie $\color{blue}{E_\text{a}}$, die für die Reaktion $\ce{A + B -> AB}$ benötigt wird, ist offensichtlich größer als die Aktivierungsenergie $\color{red}{E_\text{a}}$, die für die katalytische bzw. katalysierte Reaktion $\ce{A + \color{red}{K} + B -> A\color{red}{K} + B -> AB + \color{red}{K}}$ aufgewendet werden muss.
Die Auswirkung der herabgesetzten Aktivierungsenergie auf die Reaktionsgeschwindigkeit kann indirekt aus dem Energiediagramm abgeleitet werden: Obwohl am Ende der Reaktion bei beiden Varianten die gleiche Menge an Produkten entsteht, wird bei der katalysierten Reaktion bereits früher (also weiter links im Reaktionsverlauf) eine größere Menge des Produkts gebildet als bei der nichtkatalysierten Reaktion.
Fehleralarm
Eine gängige Fehlannahme ist, dass alle Katalysatoren die Reaktionsgeschwindigkeit erhöhen. Tatsächlich können Katalysatoren auch die Reaktionsgeschwindigkeit verringern, diese werden als negative Katalysatoren bezeichnet.
Biokatalysatoren
Katalysatoren werden in vielen technischen Anwendungen eingesetzt, um die Herstellung von gewünschten Produkten zu vereinfachen. Aber Katalysatoren kommen auch in der Natur, insbesondere in Lebewesen, in vielfältiger Weise vor. Sogenannte Biokatalysatoren sind meistens Proteine, genauer gesagt Enzyme. Katalytische Reaktionen, die über Enzyme katalysiert werden, werden enzymatische Reaktionen genannt. Diese ermöglichen beispielsweise die Fotosynthese der Pflanzen und generell die Energiegewinnung aus Nährstoffen.
Kontrovers diskutiert:
Expertinnen und Experten diskutieren darüber, ob Biokatalysatoren aus Mikroorganismen die Zukunft der Chemieindustrie sind. Einige Wissenschaftlerinnen und Wissenschaftler sehen großes Potenzial in der umweltfreundlichen und nachhaltigen Nutzung dieser Katalysatoren. Andere sind skeptisch und glauben, dass technische und wirtschaftliche Herausforderungen bestehen, die schwer zu überwinden sind.
Beispiele für Katalysatoren in der Chemie
Katalysatoren findet man im Chemielabor, in der Industrie und auch im menschlichen Körper. Eine der bekanntesten technischen Anwendungen ist wohl der Autokatalysator.
Verbrennung von Kraftstoffen im Auto
Bei der Verbrennung von Kraftstoffen wie Benzin oder Diesel im Auto entstehen unter anderem chemische Verbindungen wie Kohlenmonoxid $\left( \ce{CO} \right)$, unverbrannte Kohlenwasserstoffe $\left( \ce{C}_x \ce{H}_y \right)$ und verschiedene Stickoxide $\left( \ce{NO}_x \right)$. Diese sind giftig und sollten daher nicht in die Atmosphäre gelangen. Mithilfe eines Katalysators können diese Stoffe bereits innerhalb der Auspuffanlage des Autos effektiv weiterreagieren, wodurch deutlich weniger schädliche Stoffe wie Kohlenstoffdioxid $\left( \ce{CO2} \right)$, Stickstoff $\left( \ce{N2} \right)$ und Sauerstoff $\left( \ce{O2} \right)$ gebildet werden. Umgangsspranglich wird oft einfach die gesamte technische Vorrichtung als Katalysator bezeichnet. Darin werden die Autoabgase durch mit Platin $\left( \ce{Pt} \right)$ überzogene Keramikkammern hindurch geleitet. Hier laufen Redoxreaktionen ab, deren Aktivierungsenergie durch die Beteiligung von Platin gering gehalten wird. Platin wirkt hier also als chemischer Katalysator. Da das Platin zwar an den Redoxreaktionen teilnimmt, aber am Ende wieder im Ausgangszustand vorliegt, kann derselbe Katalysator über einen langen Zeitraum verwendet werden und wird nicht verbraucht.
Kennst du das?
Vielleicht hast du schon einmal bemerkt, wie ein Auto im Winter viel langsamer startet, wenn es draußen kalt ist. Das liegt daran, dass die chemischen Reaktionen im Motor langsamer ablaufen, wenn es kalt ist. Ein Katalysator im Motor sorgt jedoch dafür, dass diese Reaktionen schneller ablaufen, selbst bei niedrigen Temperaturen. Dadurch startet ein Auto schneller, und der Motor läuft effizienter.
Verbrennung von Wasserstoff
Auch Wasserstoff kann verbrannt werden, also mit Sauerstoff reagieren. Das kennst du vielleicht von der Knallgasreaktion bzw. Knallgasprobe:
$\ce{2 H2 + O2 -> 2 H2O}$
Ganz ohne Brennerflamme, also bereits bei Raumtemperatur, läuft die Reaktion ab, wenn ein Katalysator verwendet wird. Auch hier ist Platin $\left( \ce{Pt} \right)$ wieder ein guter Kandidat. Die katalytische Verbrennung von Wasserstoff lässt sich vereinfacht so formulieren:
$\ce{2 H2 + O2} \xrightarrow{\ce{Pt}} \ce{2 H2O}$
Mit dieser Schreibweise spart man sich die Formulierung eines Übergangszustandes, da der Katalysator am Ende ja ohnehin wieder unverändert vorliegt.
Wichtige katalytische Verfahren
Es gibt einige wichtige katalytische Verfahren, die in der Industrie eingesetzt werden, um bestimmte Chemikalien wie Säuren und Basen energieeffizient und in großen Mengen herzustellen:
- Das Haber-Bosch-Verfahren ist ein katalytisches Verfahren, das zur großtechnischen Synthese von Ammoniak eingesetzt wird. Ursprünglich wurde Eisen $\left( \ce{Fe} \right)$ als Katalysator genutzt, heutzutage sind noch einige weitere Stoffe wie Ruthenium $\left( \ce{Ru} \right)$ im Einsatz.
- Mit dem Ostwald-Verfahren wird aus Ammoniak in einem mehrstufigen, ebenfalls katalytischen Prozess Salpetersäure hergestellt. Hier kommt das uns bereits bekannte Platin $\left( \ce{Pt} \right)$ in Verbindung mit Rhodium $\left( \ce{Rh} \right)$ als Katalysator zum Einsatz.
Die so hergestellten Stoffe dienen als Grundstoffe zur Produktion vieler weiterer Produkte.
Wusstest du schon?
Katalysatoren können nicht nur chemische Reaktionen beschleunigen, sondern auch verhindern, dass unerwünschte Nebenprodukte entstehen. In der Lebensmittelindustrie werden Katalysatoren verwendet, um Fette zu härten, ohne dass gesundheitsschädliche Transfette entstehen. Diese Katalysatoren helfen also dabei, gesündere Lebensmittel herzustellen!
Katalysatoren – Verwendung
Sehen wir uns noch einmal die wichtigsten Anwendungsfelder von Katalysatoren an:
- Katalysatoren setzen die Aktivierungsenergie einer chemischen Reaktion herab und können so die Reaktionsgeschwindigkeit erhöhen.
- Das ist bei der Synthese von Chemikalien zur Herstellung vieler verschiedener Produkte von großem Nutzen, denn so kann Energie gespart werden und es können in kürzerer Zeit größere Mengen produziert werden.
- In der chemischen Industrie kommen Katalysatoren deshalb in der Mehrzahl aller Herstellungsverfahren und Prozesse zum Einsatz.
- Auch Verbrennungsreaktionen laufen durch Katalyse schneller ab.
- Im Autokatalysator werden verschiedene Redoxreaktionen durch Platin $\left( \ce{Pt} \right)$ katalysiert, um Schadstoffe in Abgasen zu vergleichsweise harmloseren Stoffen reagieren zu lassen.
- Auch bei Reaktionen organischer Stoffe in Lebewesen spielt Katalyse eine große Rolle. So sind beispielsweise die Photosynthese und die Zellatmung sogenannte enzymatische Reaktionen, d. h. sie werden durch Enzyme katalysiert.
- Eine Reaktion mit einem solchen organischen Katalysator lässt sich auch außerhalb von Lebewesen beobachten: Bei der alkoholischen Gärung reagiert mithilfe eines Hefepilzes Zucker, genauer gesagt Glucose $\left( \ce{C6H12O6} \right)$, zu Ethanol $\left( \ce{C2H5OH} \right)$ und Kohlenstoffdioxid $\left( \ce{CO2} \right)$.
Wenn im Alltag von Katalysator die Rede ist, ist damit oft der Autokatalysator gemeint – also die Vorrichtung, die im Auto zum Einsatz kommt, um den Ausstoß von Schadstoffen zu reduzieren. Chemisch gesehen ist der Katalysator allerdings ein bestimmter Reaktionsteilnehmer, der eine Reaktion beschleunigt – beim Autokatalysator ist das der Stoff Platin $\left( \ce{Pt} \right)$.
Geschichte und Bedeutung des Katalysators – von der Antike bis heute
Schon in der Antike wusste man die katalytische Wirkung einiger Stoffe zu nutzen. Aber erst im Jahr $1835$ formulierte der schwedische Chemiker Berzelius die Annahme, dass bestimmte Reaktionen nur ablaufen, sofern ein bestimmter Stoff, der dabei selbst nicht verbraucht wird, beteiligt ist. Heutzutage sind Katalysatoren nicht mehr aus der chemischen Industrie und der Verfahrenstechnik wegzudenken. Es wird geschätzt, dass ca. vier Fünftel aller chemischen Erzeugnisse in mindestens einem Produktionsschritt von einer Katalysatorwirkung profitieren. Ohne diese würden viele Reaktionen langsamer oder gar nicht ablaufen. Die Energieeinsparung hat dabei nicht nur den Effekt der Kosteneinsparung, sondern ist auch aus Sicht des Umweltschutzes, der Nachhaltigkeit und dem schonenden Umgang mit Ressourcen eine wichtige Verbesserung.
Ausblick – das lernst du nach Wirkungsweise von Katalysatoren
Weiter geht es mit der Enzymkinetik. Verstehe den Unterschied und lerne, wie sie in alltäglichen chemischen Prozessen Anwendung finden. Möchtest du dich etwas fordern, lerne etwas über die Freie Enthalpie und chemisches Gleichgewicht. Viel Spaß!
Katalysatoren - Zusammenfassung
- Ein Katalysator ist ein Stoff, mit dem die Reaktionsgeschwindigkeit einer chemischen Reaktion erhöht werden kann.
- Durch den Katalysator wird die Aktivierungsenergie einer Reaktion über die Bildung eines Übergangszustandes herabgesetzt.
- Der Katalysator nimmt zwar an der Reaktion teil, liegt aber am Ende der Reaktion wieder im Ausgangszustand, also unverändert, vor.
- Katalysatoren spielen bei vielen chemischen Reaktionen eine wichtige Rolle, v. a. in großtechnischen Anwendungen in der chemischen Industrie, da sie es ermöglichen, Energie zu sparen und größere Mengen in kürzerer Zeit zu produzieren.
Häufig gestellte Fragen zum Thema Katalysatoren
Was ist Katalyse?
Katalyse wird der Prozess genannt, bei dem ein Katalysator die Reaktionsgeschwindigkeit einer chemischen Reaktion erhöht. Dabei wird über den Katalysator ein Übergangszustand gebildet, der den Verlauf der Reaktion insofern beeinflusst, dass die Aktivierungsenergie herabgesetzt wird. Die Reaktion kann also unter geringerem Energieaufwand (und damit letztendlich auch schneller) ablaufen.
Was macht ein Katalysator?
Durch einen Katalysator wird die Aktivierungsenergie einer chemischen Reaktion herabgesetzt. Dies kann durch die Bildung eines energetisch günstigen Übergangszustandes geschehen, der durch spezifische Wechselwirkungen zwischen den Ausgangsstoffen und dem Katalysator entsteht. So kann beispielsweise eine günstigere räumliche Anordnung der Teilchen erreicht werden oder eine Schwächung der Bindungen bzw. der Wechselwirkungen zwischen den Ausgangsstoffen.
Was ist ein Katalysator und was bewirkt er?
Ein Katalysator ist ein Stoff, der die Reaktionsgeschwindigkeit einer chemischen Reaktion erhöht, indem er eine sogenannte alternative Reaktionsroute bereitstellt, die einen geringeren Energieaufwand erfordert. Dadurch ermöglicht der Katalysator eine schnellere Umsetzung der Ausgangsstoffe zu den gewünschten Produkten, d. h. die gleiche Menge an Produkten kann in kürzerer Zeit produziert werden.
Welche Eigenschaften haben Katalysatoren?
Katalysatoren werden meist sehr spezifisch (also nur für bestimmte Reaktionen) verwendet. Teilweise können sie aber auch in mehreren verschiedenen Reaktionen eingesetzt werden. Sie können selektiv wirken, indem sie die Bildung bestimmter Produkte begünstigen. Sie sind chemisch inert in dem Sinne, dass sie zwar an einer Reaktion teilnehmen, aber letztendlich durch diese nicht verändert werden, also am Ende wieder unverändert vorliegen. Sie werden demnach durch die Reaktion auch nicht verbraucht – weshalb sie in der Regel nur in geringen Mengen benötigt werden. Dabei werden homogene und heterogene Katalysatoren unterschieden, je nachdem, in welcher Phase, also in welchem Aggregatzustand, sie vorliegen bzw. ob dieser mit dem Aggregatzustand der Edukte übereinstimmt.
Warum sind Katalysatoren wichtig?
Katalysatoren ermöglichen eine schnellere und energieeffizientere Umsetzung von Ausgangsstoffen zu Produkten. Dadurch können Energie und Ressourcen eingespart und mitunter umweltschädliche Abfallprodukte vermieden werden.
Was ist das Ostwald-Verfahren?
Das Ostwald-Verfahren ist ein chemisches Verfahren zur großtechnischen Herstellung von Salpetersäure aus Ammoniak. Dabei wird Stickstoffmonoxid $\left( \ce{NO} \right)$ gebildet, das anschließend zu Salpetersäure $\left( \ce{HNO3} \right)$ umgesetzt wird. Auch hier wird ein Katalysator eingesetzt – in der Regel Platin $\left( \ce{Pt} \right)$ und Rhodium $\left( \ce{Rh} \right)$.
Was haben Katalysatoren mit Photosynthese zu tun?
Bei der Fotosynthese (auch: Photosynthese) der Pflanzen kommen Biokatalysatoren zum Einsatz, welche die Umsetzung von Kohlenstoffdioxid $\left( \ce{CO2} \right)$ und Wasser $\left( \ce{H2O} \right)$ zu Glucose $\left( \ce{C6H12O6} \right)$ und Sauerstoff $\left( \ce{O2} \right)$ erst ermöglichen. Ein Beispiel für einen solchen Katalysator ist das Enzym RuBisCo, das Kohlenstoffdioxid $\left( \ce{CO2} \right)$ bindet und so die Reaktion beschleunigt. Ohne Katalysatoren würde die Fotosynthese (unter den auf der Erde vorherrschenden Bedingungen) wesentlich langsamer ablaufen und wäre für die Pflanzen nicht ausreichend effizient.