30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Katalyse 09:06 min

Textversion des Videos

Transkript Katalyse

Guten Tag und Herzlich Willkommen! In diesem Video geht es um die Katalyse. Gliederung des Videos: 1. "unmögliche" exergone Reaktionen 2. Der Katalysator hilft 3. Tricks bei endergonen Reaktionen 4. Enzyme und gekoppelte Reaktionen 5. Zusammenfassung   1. "Unmögliche" exergone Reaktionen. Ich möchte euch hier 2 exergone Reaktionen vorstellen. Die Edukte sind jeweils A und B beziehungsweise C und D. Und es kommt bei diesen Reaktionen, so wie es sich für gute exergone Reaktionen gehört, zu einer Verminderung der Gibbs freien Reaktionsenergie. Das bedeutet bei Standardbedingungen, dass ∆ G1 und ∆ G2 jeweils kleiner als 0 sind. Die Thermodynamik, über die wir bereits gesprochen haben, sagt dann voraus, dass sowohl die linke als auch die rechte Reaktion spontan ablaufen. Einen wesentlichen Unterschied gibt es zwischen der linken und der rechten Reaktion: Während die Gibbs freie Aktivierungsenergie bei der linken Reaktion nur wenig größer als 0 ist, so ist sie bei der rechten Reaktion sehr hoch. Die Kinetik sagt dann voraus, dass die linke Reaktion möglich und die rechte Reaktion unmöglich ist. Die Gibbs freie Aktivierungsenergie der rechten Reaktion ist einfach zu hoch. Gibt es nun eine Möglichkeit, die rechte Reaktion zum Laufen zu bringen? 2. Der Katalysator hilft. Das Bild für die rechte Reaktion habe ich stehenlassen. Es ist der energetische Verlauf ohne Katalysator. Im Jahre 1835 schlug der berühmte Chemiker Berzelius einen neuen Begriff vor. Dieser Begriff hieß: Katalysator. Was ist das? Ein Katalysator ist ein Stoff, der eine chemische Reaktion beschleunigt. Der Katalysator verbraucht sich dabei nicht. Neben das Energiediagramm ohne Katalysator möchte ich nun das Energiediagramm mit Katalysator skizzieren. Die Energieniveaus der Ausgangsstoffe und Reaktionsprodukte bleiben erhalten. Es ändert sich jedoch die Aktivierungsbarriere: Sie wird stark vermindert. Von einem ehemals sehr hohen Betrag verändert sich die Gibbs freie Aktivierungsenergie zu einem Wert, der nicht viel größer als 0 ist. Die kleine Delle im Kurvenverlauf deutet daraufhin, dass sich in Anwesenheit eines Katalysators ein Komplex bildet. Wollen wir die Eigenschaften des Katalysators kurz zusammenfassen: Der Katalysator vermindert die Gibbs freie Aktivierungsenergie. Das führt dazu, dass eine Reaktion, die vormals sehr langsam ablief, nun sehr schnell abläuft. Das bedeutet als 2., dass es zu einer Erhöhung der Reaktionsgeschwindigkeit gekommen ist. Und 3., der Katalysator verbraucht sich bei einer chemischen Reaktion nicht. Und noch etwas: Ein Katalysator ist kein Wundermittel. Wenn die chemische Reaktion nicht abläuft, so ist der Katalysator einfach sinnlos. 3. Tricks bei endergonen Reaktionen. Vom thermodynamischen Standpunkt aus, sind "endergone Reaktionen" Reaktionen, die praktisch nicht ablaufen. Betrachten wir den Fall, dass A zu B reagiert, und das chemische Gleichgewicht stark in Richtung A verschoben ist. Die Reaktion ist dann stark endergon. Das heißt, das energetische Niveau von B liegt weit über dem energetischen Niveau von A. Diese Reaktion hat ein zweifaches Problem: Nicht nur, dass die Gibbs freie Reaktionsenergie sehr groß ist (viel größer als 0), die Gibbs freie Aktivierungsenergie ist vom Betrag und auch vom Vorzeichen noch größer. Damit man hier Reaktionsprodukt B gewinnen kann, ist es wichtig, dass sich B überhaupt bildet. Ausreichend sind schon relativ kleine Mengen. Um aber B in ausreichender Menge gewinnen zu können, ist es notwendig, auf einen Trick zurückzugreifen: B wird fortwährend aus dem Gleichgewicht entfernt. Es gibt verschiedene Möglichkeiten, dies zu bewerkstelligen. 3 wichtige Methoden sind die Fällung, die Extraktion und die Destillation. 4. Enzyme und gekoppelte Reaktionen. Der Begriff "Enzym" stammt aus dem Jahre 1877 und geht auf den Physiologen Wilhelm Friedrich Kühne zurück. Enzyme sind Katalysatoren in lebenden Organismen, man bezeichnet sie auch als Biokatalysatoren. Früher wurden Enzyme mitunter als Fermente bezeichnet. Enzyme sind in der Lage die Geschwindigkeit einer Reaktion um den Faktor 105 bis 1017 zu erhöhen. Ein Beispiel für so ein komplexes Enzym ist TM, ein perfektes Enzym für die Zuckerspaltung. Ich habe schon darauf hingewiesen, dass Enzyme kein Wundermittel sind. Eine endergone Reaktion A zu B läuft auch mit Enzymen nur schlecht ab. Da ∆ G1-0 größer als 0 ist, läuft diese Reaktion laut Thermodynamik nicht ab. Damit diese Reaktion ablaufen kann, ist es notwendig, sie mit einer zweiten Reaktion zu koppeln, und zwar mit den beiden Reaktionspartner B und C. C soll dabei energetisch günstiger sein als B. Das bedeutet aber, ∆ G2-0 ist kleiner als 0. Die Reaktion läuft von B nach C. Das heißt, wir haben folgende Reaktionskette: Von A zu B zu C. A zu B und B zu C sind miteinander gekoppelt. Die Gibbs freie Energie unter Standardbedingungen ergibt sich als ∆ G1-0 + ∆ G2-0. Damit der gesamt Vorgang stattfinden kann, muss gelten: 0 ist größer ∆ G0-gesamt. Bei den einzelnen Teilreaktionen muss es sich, wenn wir so argumentieren, um Gleichgewichtsreaktionen handeln. Das heißt A im Gleichgewicht zu B ergibt als Gleichgewichtskonstante K1 und B zu C ergibt als Gleichgewichtskonstante K2. A steht im Gleichgewicht zu B und B steht im Gleichgewicht zu C. Man kann dann zeigen, dass die Gleichgewichtskonstante der gesamten Reaktion Kges = K1 × K2 ist. Und nun noch ein akademisches Beispiel, das heißt, ich habe mir die Zahlen ausgedacht und sie entsprechen keiner realen chemischen Reaktion. K1 soll 10^+3 betragen, entsprechend dem endergonen Charakter dieser Reaktion. K2 soll 105 sein, dass diese Reaktion exergon ist. Es ergibt sich als K gesamt 100, denn 10^-3 × 105 = 10² und das ist 100. Die Gesamtreaktion läuft daher ab. Alle Reaktionen, die Einzelreaktionen und die Gesamtreaktion laufen ab.   5. Zusammenfassung. Katalyse bedeutet Verwendung eines Katalysators bei einer chemischen Reaktion. Wenn eine chemische Reaktion exergon ist, aber eine hohe Gibbs freie Aktivierungsenergie hat, so führt der Einsatz eines Katalysators zu einer Verminderung dieser Gibbs freien Aktivierungsenergie.Verminderung der Gibbs freien Aktivierungsenergie führt zu einer Erhöhung der Reaktionsgeschwindigkeit. Der Begriff des Katalysators wurde 1835 von Berzelius eingeführt. 1877 wurde von Kühne der Begriff Enzym eingeführt. Enzym bedeutet Katalysator in lebenden Organismen. Ein wichtiges Enzym ist TM für die Zuckerspaltung. Enzyme können die Geschwindigkeit einer Reaktion um den Faktor 105 bis 1017 steigern. Wenn eine Reaktion von A nach B endergon ist, so kann sie nur dann ablaufen, wenn sie mit einer exergonen Reaktion B nach C gekoppelt ist. Im ersten Fall ist die Gibbs freie Reaktionsenergie positiv, im zweiten Fall die Gibbs freie Reaktionsenergie negativ. Die gesamt Gibbs freie Energie ergibt sich als Summe der beiden Gibbs freien Energien der Reaktionen. Sie muss, damit der Gesamtprozess ablaufen kann, negativ sein. Solche Reaktionen in lebenden Organismen bezeichnet man als gekoppelte Reaktionen. Ich danke für die Aufmerksamkeit. Alles Gute, Auf Wiedersehen!      

2 Kommentare
  1. Es muss nicht. Das Beispiel wurde gewählt, weil es bei Enzymen so ist. Die Prozesse laufen ständig ab. Gleichgewichte sind daher ein gutes Modell.
    Alles Gute

    Von André Otto, vor mehr als 6 Jahren
  2. Hallo Herr Otto. Warum muss es sich bei Minute 6:45 bei der gekoppelten Reaktion um Gleichgewichtsreaktionen handeln?

    Von Skyliner88, vor mehr als 6 Jahren

Katalyse Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Katalyse kannst du es wiederholen und üben.

  • Erläutere die Eigenschaften von exergonen und endergonen Reaktionen.

    Tipps

    Die Gibbs-Freie-Energie ist ein Maß für die Freiwilligkeit einer Reaktion.

    Um eine Reaktion zum Laufen zu bringen, braucht man häufig Energie.

    Die Zufuhr von Wärmenergie beschleunigt Reaktionen.

    Lösung

    Reaktionen werden thermodynamisch eingeteilt in exergone und endergone Reaktionen.

    • Exergone Reaktionen sind prinzipiell mögliche und zum Teil spontan ablaufende Reaktionen. Ihre Gibbsche-Freie-Energie $\Delta G^0$ ist bei Standardbedingungen kleiner Null. Läuft eine exergone Reaktion nicht spontan ab, ist ihre Gibbs-Freie-Aktivierungsenergie größer als die der spontan ablaufenden Reaktion. Mit Hilfe eines Katalysators werden sie möglich.
    • Endergone Reaktionen sind thermodynamisch unmögliche Reaktionen. Ihre $\Delta G^0$ ist sehr viel größer als Null. Der Trick ist, dass durch kontinuierliches Abtrennen von Produkten die Reaktion ermöglicht wird. Voraussetzung jedoch ist, dass eine Reaktion überhaupt möglich ist.

  • Beschreibe den Verlauf einer exergonen Reaktion mit Katalysator.

    Tipps

    Wie ist die Funktionsweise eines Katalysators definiert?

    Überlege, wovon der Verlauf einer exergonen Reaktion abhängig ist.

    Wie können Bewegung der Teilchen und Energie zusammenhängen?

    Lösung

    Exergone Reaktionen mit einer Gibbs-Freien-Aktivierungsenergie sehr viel größer als Null sind unmögliche Reaktionen. Sie werden erst möglich, wenn die Gibbs-Freie-Aktivierungsenergie größer bzw. gleich Null ist. Dieser Zustand wird durch einen Katalysator erreicht. Der Katalysator senkt die Gibbs-Freie-Aktivierungenergie und steigert gleichzeitig die Reaktionsgeschwindigkeit. Dieser Vorgang kommt aufgrund einer instabilen Bindung zwischen dem Katalysator und einem der Edukte zustande. Dieser Prozess benötigt eine geringere Gibbs-Freie-Aktivierungenergie.

  • Erkläre die thermodynamischen Bedingungen für den Ablauf chemischer Reaktionen.

    Tipps

    Ob Reaktionen spontan, überhaupt oder nur unfreiwillig ablaufen, hat seine Ursache in der Thermodynamik.

    Überlege, warum die Teilchen für eine Reaktion aktiviert werden müssen.

    Welche Funktionen haben die Gibbs-Freie-Energie unter Standardbedingungen und die Gibbs-Freie-Aktivierungsenergie für den Verlauf von chemischen Reaktionen?

    Lösung

    Die Bedingungen für eine exergone Reaktion sind geknüpft an die Gibbs-Freie-Energie bei Standardbedingungen $\Delta G^0$. Sie laufen prinzipiell ab, wenn $\Delta G^0$ < 0 ist. Dabei unterscheidet man in spontan ablaufende und nicht spontan ablaufende Reaktionen. Die Gibbs-Freie-Aktivierungsenergie $\Delta G^{\#}$ muss bei spontanen Reaktionen kleiner oder gleich Null sein. Ist die Gibbs-Freie-Aktivierungenergie sehr viel größer Null, ist die Reaktion unmöglich. Mit Hilfe eines Katalysators kann sie aber möglich gemacht werden, weil dieser die Gibbs-Freie-Aktivierungsnergie senkt und die Reaktionsgeschwindigkeit der Teilchen erhöht. Jede Reaktion hat zwei Komponenten, eine thermodynamische und eine kinetische. Die Thermodynamische beschreibt das Verhältnis von Gibbs-Freie-Standardenergie und der Gibbs-Freie-Aktivierungsergie. Die Kinetische basiert auf der Möglichkeit der Geschwindigkeit der Reaktion der Teilchen im Reaktionsmedium.

  • Vergleiche den Einsatz von Biokatalysatoren und technischen Katalysatoren.

    Tipps

    In welchen Bereichen finden Katalysatoren Anwendung?

    Überlege, wer für die Energiegewinnung in der Muskelzelle verantwortlich ist.

    Unterscheide zwischen technisch und biologisch.

    Lösung

    Enzyme sind Biokatalysatoren. Ihr Wirkspektrum bezieht sich auf biochemische bzw. biologische Reaktionen wie z.B. die der Zellatmung. Ihre Funktionalität ist mit den technischen Katalysatoren direkt vergleichbar. Enzyme bewirken das Herabsetzen der Gibbs-Freien-Aktivierungsenergie und ermöglichen so gezielte biochemische Reaktionen. Der technische Katalysator bewirkt ebenfalls eine Reduzierung der Gibbs-Freien-Aktivierungsnergie und ermöglicht so Synthesen, wie die Ammoniaksynthese, oder verhindert das Entstehen von Schadstoffen.

  • Nenne Eigenschaften und die Funktionsweise eines Katalysators.

    Tipps

    Überlege, wo man Katalysatoren in der Technik einsetzt.

    Schadstoffe, die beim Autofahren entstehen, werden durch einen Katalysator verhindert.

    Lösung

    Katalysatoren sind Stoffe oder Verbindungen, die eine chemische Reaktion beschleunigen. Sie setzen den Energieaufwand für eine Reaktion herab. Sie gehen während der Reaktion mit den Reaktanten eine lockere Verbindung ein. Das Gleichgewicht der Reaktion verschiebt sich durch den Katalysator nicht, es wird nur schneller erreicht. Am Ende der Reaktion liegt der Katalysator unverändert vor. Viele Reaktionen werden erst möglich, wenn Katalysatoren eingesetzt werden.

  • Erkläre den Verlauf des katalytisch unterstützten Zerfalls von Wasserstoffperoxid durch Braunstein.

    Tipps

    Welche Funktion hat ein Katalysator?

    Auch Zerfallsreaktionen folgen den thermodynamischen Gesetzen.

    Lösung

    Sowohl Bildungs- als auch Zerfallsreaktionen können katalytisch unterstützt werden. Dabei wird immer die Freie-Gibbs-Aktivieriungenergie gesenkt. Gibt man zu einer $H_2O_2$ -Lösung Braunstein ($MnO_2$), erfolgt eine heftige Reaktion – die Lösung sprudelt. Es entsteht gasförmiger Sauerstoff, der sprudelnd entweicht. Es konnte nachgewiesen werden, dass dieser Sauerstoff alleinig dem Wasserstoffperoxid entstammt. Die Reaktion wurde also durch den Braunstein katalysiert. Braunstein bildet ein Zwischenprodukt, dass die Freie-Gibbs-Aktivierungsenergie der Zerfallsreaktion senkt. Am Ende der Reaktion liegt Braunstein, wie alle Katalysatoren, unverändert vor.