30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Eigenschaften und Verwendung von Verbundwerkstoffen 06:31 min

Textversion des Videos

Transkript Eigenschaften und Verwendung von Verbundwerkstoffen

Hallo ich bin Mathias. Willkommen zu Chemie.

Weißt du eigentlich wie die Flügel eines Flugzeugs so groß sein können ohne zu brechen? Oder woraus ein Space Shuttle gebaut ist? Das Geheimnis sind Verbundwerkstoffe. Warum sie so toll für diese Zwecke geeignet sind, werde ich dir in diesem Video erklären. Es gliedert sich wie folgt. Als erstes werde ich dir erklären wie Verbundwerkstoffe aufgebaut sind und dabei auf die Matrix und das Verstärkungsmaterial eingehen. Was diese Werkstoffe für Eigenschaften haben sehen wir uns dann an. Nun folgen daraus die Verwendungszwecke. Am Schluss gibt es eine kleine Zusammenfassung.

Dann starten wir mit dem Aufbau. Verbundwerkstoffe bestehen aus mindestens 2 Komponenten. Das eine ist die Matrix oder auch Grundsubstanz. Sie ist hier gelb dargestellt. Die zweite Komponente ist das Verstärkungsmaterial, hier türkis. Die Matrix ist ein Kunststoff. Es werden Thermoplasten und Duroplasten verwendet. Thermoplasten bestehen aus langen Ketten. Sie sind weich und gut verformbar bei Wärme. Duroplasten dagegen sind räumlich vernetzte Polymere. Sie sind hart und formstabil bei Wärme. Am häufigsten verwendet werden Epoxidharze. Es sind Duroplaste. Ein Epoxidharze sind Polyether mit endständigen Epoxygruppen. Dies ist die Epoxy-Gruppe. Es ist ein Ring aus 2 Kohlenstoffatomen und einem Sauerstoffatom. Dieser Ring steht unter Spannung. Daher ist er sehr reaktiv. Diese Epoxy-Gruppe kann zum Beispiel mit einem Alkohol reagieren. Es läuft eine Polyaddition ab. Hierbei reagiert die OH-Gruppe mit der Epoxy-Gruppe. Dadurch entsteht eine Sauerstoffbrücke. Das Epoxidharz verleiht dem Werkstoff eine hohe Festigkeit und thermische Stabilität. Ein Thermoplast, der oft für die Matrix verwendet wird, ist Polyester. Er kommt in Fiberglas zum Einsatz. Für die Herstellung benötigt man Carbonsäuren und Alkohole. Carboxy-Gruppe und Hydroxy-Gruppe reagieren unter Abspaltung von Wasser miteinander. Eine Estergruppe hat sich gebildet. Die Reaktion ist eine Polykondensation. So die Matrix hätten wir. Wir brauchen nun noch die 2. Komponente, das Verstärkungsmaterial. Es dient dazu die Steifigkeit und Zugfestigkeit des ganzen Werkstoffs zu erhöhen. Ausserdem macht es ihn beständig gegen aggressive Substanzen, wie zum Beispiel Säuren, und hohe Temperaturen. Das Material wird in Form von Fasern eingearbeitet. Diese liegen parallel im Werkstoff. Sie werden dann aufeinander gestapelt. Diese Schichten nennt man unidirektionale Schichten. Zusammen ergeben sie das UD-Laminat. Eingesetzt werden: Glasfasern, Kohlenstofffasern und Aramidfasern. Du weißt nun wie Verbundstoffe aufgebaut sind. Bei diesem Aufwand müssen sie ja ganz tolle Eigenschaften haben. Diese sehen wir uns jetzt an. Verbundwerkstoffe besitzen eine hohe Steifigkeit, sind also sehr belastbar. Gleichzeitig sind sie aber auch sehr flexibel. Sie kommen damit den wünschenswerten Eigenschaften von Stahl sehr nahe, sind dabei allerdings korrosionsbeständig und durch ihre geringe Dichte auch sehr leicht. Wofür werden diese Werkstoffe nun verwendet? Zum Einsatz kommen sie in der Luft- und Raumfahrt. Zum Beispiel für Tragflächen. Des weiteren werden industrielle Bauteile aus ihnen gefertigt. Hightech-Prothesen für Spitzensportler sind aus Kohlefaser-verstärkten Kunststoffen. Weitere Anwendungsgebiete im Sport sind Motorsport, wie die Formel 1, und der Radsport. Du weißt nun wie Verbundwerkstoffe aufgebaut sind und welche Eigenschaften sie besitzen. Ausserdem kennst du nun auch ihre Anwendungsbereiche. Nun werde ich das Video noch einmal kurz zusammenfassen. Verbundwerkstoffe bestehen aus mindestens 2 Komponenten. Die eine ist die Matrix oder Grundsubstanz, wie zum Beispiel Epoxidharz. Die Zweite ist das Verstärkungsmaterial, beispielsweise Kohlenstofffaser. Verbundwerkstoffe besitzen hervorragende mechanische Eigenschaften. Daher kommen sie zum Einsatz wenn bei extremen Anforderungen ein möglichst niedriges Gewicht benötigt wird.

Vielen Dank für deine Aufmerksamkeit. Bis zum nächsten mal, dein Mathias

Eigenschaften und Verwendung von Verbundwerkstoffen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Eigenschaften und Verwendung von Verbundwerkstoffen kannst du es wiederholen und üben.

  • Nenne die Aufgaben des Verstärkungsmaterials.

    Tipps

    Die Verstärkungsfasern haben meist eine höhere Dichte als das Matrix-Material.

    Lösung

    Die Verstärkungsfasern bestehen, wie der Name schon sagt, aus langen Kunststofffasern. Diese sind häufig wie bei Seilen in Bündeln angeordnet, dies erhöht die Festigkeit. Die Fasern funktionieren auch ähnlich wie Seile: In Richtung der Fasern sind sie sehr stabil und halten hohe Zugkräfte aus. In andere Richtungen allerdings sind die Fasern wenig stabil und sehr flexibel. Es ist die Aufgabe des Matrixmaterials, die Fasern zu stützen und in der gewünschten Position zu halten.

    Die Aufgabe des Verstärkungsmaterial ist es also, in Richtung der Fasern dem Material eine hohe Zugfestigkeit zu verleihen. Das Matrixmaterial allein könnte nicht so hohe Zugkräfte aufnehmen, ohne dabei zu zerreißen. Ordnet man die Fasern in unterschiedliche Richtungen an, geben sie dem Werkstoff Zugfestigkeit in alle Raumrichtungen. Dadurch lässt sich ein sehr steifer Werkstoff herstellen.

  • Nenne wünschenswerte Eigenschaften von Verbundwerkstoffen.

    Tipps

    Die Dichte eines Stoffes ist als die Masse in Gramm pro Kubikzentimeter des Stoffes definiert.

    Lösung

    Verbundwerkstoffe werden aus zwei unterschiedlichen Materialien gefertigt: Verstärkungsfasern werden in eine Kunststoffmatrix eingebettet. Beide Materialien bestimmen die Eigenschaften des Verbundmaterials. Daher haben Verbundmaterialien gegenüber einfachen Kunststoffen deutlich bessere Materialeigenschaften.

    Ähnlich wie Stahl sind sie trotz einer sehr hohen Zugfestigkeit sehr elastisch. Das bedeutet, an einer Platte aus Verbundmaterial kann man in Längsrichtung sehr feste ziehen, ohne dass das Material bricht. Gleichzeitig ist die Platte selbst biegsam. Wie Stahl kann es, zum Beispiel in Form von T-Trägern, sehr steif sein. Das ist wichtig, damit sich zum Beispiel Flugzeugflügel nicht unter Belastung verbiegen.

    Verbundwerkstoffe haben gegenüber Stahl einige gewichtige Vorteile. Der Wichtigste ist die geringe Dichte. Diese führt dazu, dass Bauteile und Verbundwerkstoffen im Vergleich zu den gleichen Bauteilen aus Stahl wesentlich leichter sind. Außerdem sind Verbundwerkstoffe sehr beständig, das heißt, weder oxidieren sie, noch sind sie empfindlich gegenüber Säuren, Basen oder vielen anderen Chemikalien.

  • Ermittle Einsatzmöglichkeiten von Verbundwerstoffen mit Elastomeren als Matrixmaterial.

    Tipps

    Elastomere sind weich und lassen sich unter geringem Kraftaufwand verformen!

    Lösung

    Elastomere können hohe Kräfte aufnehmen, ohne zu reißen, allerdings dehnt sich das Material dabei sehr. Daher sind Elastomere als Verstärkungsmaterial ungeeignet. Sie dehnen sich unter Zugbelastung stärker als das Matrixmaterial, dieses hält der Zugbelastung daher nicht stand und reißt.
    Auch als Matrixmaterial sind Elastomere für die meisten Einsatzzwecke ungeeignet. Sie schützen die Verstärkungsfasern nicht ausreichend vor Biege- und Druckbelastungen, da sich das Matrixmaterial unter Belastung verformen würde. Unter Zugbelastung würde die Kraft auch nicht auf alle Fasern verteilt werden, da das elastische Material die Kraft nicht weiterleiten kann.

    Eine Ausnahme stellen Keil- und Zahnriemen dar. Diese sind ringförmig, das Fasermaterial verläuft also im Kreis. Dadurch können die Textil- oder Stahlfasern hohe Ringkräfte aufnehmen. Die Elastomer-Matrix aus Gummi wird dabei kaum gedehnt, sie schützt die Fasern vor Umwelteinflüssen. Außerdem hat sie eine höhere Reibung als das Fasermaterial, sie klebt geradezu an den Rollen, über die der Keilriemen läuft. Dies erhöht den Wirkungsgrad der Keilriemen.

  • Fasse zusammen, aus welchen Materialien Verbundwerkstoffe aufgebaut sind.

    Tipps

    Als Duroplaste und Thermoplaste werden Kunststoffe mit speziellen Eigenschaften bezeichnet.

    Lösung

    Das Prinzip des Verbundwerkstoffs findet vielzählige Anwendungen in Natur und Technik. Durch die Kombination zweier unterschiedlicher Materialien lassen sich die Eigenschaften des Verbundmaterials verbessern.
    So ist zum Beispiel Holz aus zugfesten Cellulose-Fasern aufgebaut, die in eine Matrix aus druckstabilen Lignin eingelagert sind. Bei den Knochen der Wirbeltiere verleiht ein Gerüst aus Calciumphosphat dem Material Steifigkeit und Stabilität, das in einer Matrix aus Kollagen, einem Protein, eingebettet ist.
    Das Prinzip empfindet der Mensch in vielen künstlichen, technisch genutzten Materialien nach. Mit den Faser-Kunststoff-Verbundmaterialien habt ihr ein Beispiel kennengelernt. Ein weiteres Beispiel ist Stahlbeton - hier sind Stahlfasern in eine Matrix aus Beton eingebettet. Bettet man Fasern in keramische Werkstoffe ein, so erhält man die sehr festen und hitzebeständigen keramischen Faserverbundwerkstoffe.

  • Prüfe, welche Bauteile sinnvoll aus Verbundwerkstoffen hergestellt werden können.

    Tipps

    In Triebwerken wird Kerosin bei hohen Temperaturen verbrannt.

    Stahlteile haben eine höhere Abriebfestigkeit als Bauteile aus Verbundwerkstoffen.

    Lösung

    Verbundwerkstoffe können überall dort eingesetzt werden, wo leichte, tragfähige Bauteile gefragt sind. Fahrradrahmen, Rotoren von Windrädern oder Tragflächen von Flugzeugen sind gute Beispiele.

    Ungeeignet sind Bauteile aus Faser-Verbundwerkstoffen zum Beispiel, wenn sehr hohe Temperaturen vorherrschen. Die Kunststoffmatrix wird selbst bei einer sehr teuren Teflon-Matrix bei Temperaturen über 350°C zerstört. Für Flugzeugturbinen mit Betriebstemperaturen von etwa 1300°C sind Verbundwerkstoffe aus Kunststoff daher ungeeignet.

    Auch in Sachen Abriebfestigkeit sind Metallbauteile im Vorteil. Bei Fahrradketten reibt die Kette unter Druck über die Zahnräder, daher ist hier der Abrieb sehr groß. Eine verschleißarme Fahrradkette aus Verbundwerkstoff wäre unverhältnismäßig teurer als eine Stahl-Kette, daher wird dieses Bauteil nicht aus Verbundwerkstoffen gefertigt.

  • Analysiere die mechanischen Eigenschaften von Verbundwerkstoffen.

    Tipps

    Geringe Zugfestigkeit bedeutet, dass das Material unter Zugbelastung bricht. Dies ist immer abhängig von der Zugrichtung!

    Lösung

    Die Richtung, in der die Fasern in die Matrix eingelagert sind, entscheidet über die mechanischen Eigenschaften des Faser-Verbundwerkstoffs. Die Fasern verleihen dem Material Zugfestigkeit, allerdings nur in Richtung der Fasern. Da die Fasern aus einem steifen Material bestehen, sind sie empfindlich gegenüber Biegebelastungen, also Belastungen quer zur Faserrichtung. In dieser Richtung brechen sie bei geringer Belastung.
    Es ist die Aufgabe des Matrixmaterials, die Fasern vor diesen Biegebelastungen zu schützen. Es nimmt anliegende Kräfte auf und verteilt die Kraft auf alle Fasern. Auch bei Zugbelastung wird die anliegende Kraft auf viele Faserbündel verteilt.

    Fasern lassen sich jedoch auch in mehr als nur einer Richtung anordnen. In Platten aus Faser-Verbundwerkstoff werden die Fasern in einer Ebene angeordnet, daher sind die Platten in der Ebene in alle Richtungen sehr stabil bei Zugbelastungen. Durch Verweben der Fasern in dreidimensionale Strukturen lassen sich räumliche Werkstücke herstellen, die im Raum in die gewünschte Richtung hohe Zugbelastungen aushalten.