Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Der Kalkkreislauf

Erfahre, wie Kalkstein zu Calciumhydrogencarbonat wird und wieder zu Kalk ausfällt. Entdecke, warum Magnesium eine Rolle spielt und wie Tropfsteinhöhlen entstehen. Interessiert? Dies und vieles mehr im Video Kalkkreislauf!

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bereit für eine echte Prüfung?

Das Kalkkreislauf Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten
Bewertung

Ø 4.2 / 41 Bewertungen
Die Autor*innen
Avatar
André Otto
Der Kalkkreislauf
lernst du in der 9. Klasse - 10. Klasse

Grundlagen zum Thema Der Kalkkreislauf

Kalkkreislauf – Chemie

Sicher hast du schon Bilder von Tropfsteinhöhlen gesehen oder gar eine besucht oder von den mächtigen Kalksteinformationen auf Rügen gehört? Doch woraus bestehen diese Naturwunder, wie bilden sie sich und wie verwittern sie?
Dazu schauen wir uns heute den Kalkkreislauf genauer an.

Kalkkreislauf – zwei Arten

Bevor wir jedoch beginnen, gilt es zunächst, genauer einzugrenzen. Es gibt nämlich zwei verschiedene Kalkkreisläufe – den natürlichen und den technischen. Die beiden Kreisläufe sind miteinander verwandt, da in beiden Fällen Kalk, also Calciumcarbonat, im Mittelpunkt steht. Im Detail finden jedoch andere Prozesse statt. Im Folgenden wollen wir die Frage „Was versteht man unter dem natürlichen Kalkkreislauf?“ klären. Wenn du wissen möchtest, wie der technische Kalkkreislauf funktioniert und wo dieser Verwendung findet, empfehlen wir das passende Video Technischer Kalkkreislauf.

Der natürliche Kalkkreislauf – Definition und Verbindungen

Kalk wird als Begriff in verschiedenen Kontexten verwendet. Im Zusammenhang mit dem Kalkkreislauf wollen wir uns darauf einigen, dass es sich hierbei um das Mineral Calcit ($\ce{CaCO3}$) handelt, welches zum überwiegenden Teil das Gestein Kalkstein aufbaut. Wir finden Kalkstein z. B. als Rüdersdorfer Muschelkalk (bei Berlin), die Kreidefelsen auf der Insel Rügen (Ostsee, Mecklenburg-Vorpommern) bestehen zum großen Teil daraus und auch die Kalkalpen sind überwiegend aus Kalkstein aufgebaut. All diese Formationen bestehen aus den Überresten von Kalkschalen abgestorbener Meeresbewohner aus längst vergangenen Zeiten.
Der natürliche Kalkkreislauf beschreibt dann einfach erklärt die Wanderung der Calciumionen $\ce{Ca2+}$ in der Natur: vom Kalk, seinem Auflösen, dem Abtransport der Calciumionen bis hin zum erneuten Ausfällen von Kalk. Die Calciumionen können dabei sowohl gelöst als auch in gebundener Form auftreten. Folgende Verbindungen sind für das Verständnis des Kreislaufes wichtig:

  • Calciumcarbonat (Calcit) $\ce{CaCO3}$
  • Calciumhydrogencarbonat $\ce{Ca(HCO3)2}$
  • Hydrogencarbonat $\ce{HCO3-}$
  • Calciumionen $\ce{Ca2+}$
  • Kohlenstoffdioxid $\ce{CO2}$
  • Wasser $\ce{H2O}$

Der natürliche Kalkkreislauf – Einzelschritte

4768_Natürlicher_Kalkkreislauf.svg

In der Abbildung siehst du den natürlichen Kalkkreislauf dargestellt. Man kann ihn in drei wichtige Schritte unterteilen:

1. Zersetzung des Kalksteins

Calcit besitzt mit $\pu{0,014 g//l}$ (bei $\pu{20 °C}$) eine extrem geringe Löslichkeit in Wasser. Er ist praktisch nicht wasserlöslich. Dennoch sind kalkhaltige Gesteine sehr stark durch Verwitterung beansprucht. Der Grund dafür liegt im in der Atmosphäre vorhandenen Kohlenstoffdioxid. Dieses bildet mit Wassermolekülen (Regen, Meerwasser) zunächst Kohlensäure und anschließend Calciumhydrogencarbonat nach folgenden Reaktionen:

$\ce{CO2 + H2O <=> H2CO3}$

$\ce{CaCO3 + H2CO3 -> Ca(HCO3)2}$

Das entstehende Calciumhydrogencarbonat ist mit $\pu{1,66 g//l}$ (bei $\pu{20 °C}$) gut in Wasser löslich und dissoziiert weiter zu Calcium- und Hydrogencarbonationen:

$\ce{Ca(HCO3)2 <=> Ca2+ + 2 HCO3-}$

2. Abtransport der Ionen

Die gelösten Ionen werden nun mit dem Wasser in Bächen, Flüssen bis hin zum Meer weitertransportiert. Zum Teil versickern sie auch an Ort und Stelle im Boden bzw. durch poröses Gestein. Dies geschieht, solange sich die Umgebungsbedingungen nicht ändern.

3. Ausfällung der gelösten Bestandteile

Verschiedene Faktoren können nun eine Ausfällung der gelösten Ionen begünstigen. Wird es z. B. wärmer, verdunstet das Wasser. Auch eine Übersättigung an gelösten Ionen führt zu deren Ausfällen. Je höher der pH-Wert, also desto basischer, umso mehr Calciumcarbonat fällt wieder aus dem Wasser aus. Der Prozess läuft nun wieder umgekehrt ab bzw. verschiebt sich zur Seite der Edukte (links vom Reaktionspfeil) der oben genannten Reaktionsgleichungen. Dies geschieht z. B. wenn Oberflächenwasser in Karstgebieten in unterirdische Höhlen versickert. Ist es dort wärmer, fallen die gelösten Ionen wieder aus und bilden die hängenden Stalaktiten bzw. stehenden Stalagmiten in den bekannten Tropfsteinhöhlen.

Beteiligung von Magnesium

In der Natur besteht Kalkstein äußerst selten nur aus reinem Calcit. Dieser enthält oft Anteile von Magnesium ($\ce{Mg}$). Die dazugehörigen Minerale sind Magnesit $\ce{MgCO3}$ und Dolomit $\ce{CaMg(CO3)2}$. Die Löslichkeit dieser Verbindungen unterscheidet sich im Einzelnen von der Calcit-Löslichkeit, die ablaufenden Prozesse sind jedoch ähnlich. Neben Calciumhydrogencarbonaten entstehen dann auch Magnesiumhydrogencarbonate. Diese sind im Übrigen auch für die Wasserhärte bestimmend. Je höher ihr Anteil, desto höher auch die Härte des Wassers.

Das Video Kalkkreislauf

Wie entstehen eigentlich Tropfsteinhöhlen mit ihren Stalagmiten und Stalaktiten? Diese Frage wird dir im folgenden Video mithilfe des Kalkkreislaufes beantwortet. Dieser beginnt mit dem Kalkstein, welcher von Wasser und Kohlenstoffdioxid angegriffen und aufgelöst wird. Die Calciumhydrogencarbonat-Lösung fließt dann ab und kann sich an einem neuen Ort sammeln, abtropfen und erneut verfestigen. Dabei wird wieder Wasser und Kohlenstoffdioxid abgegeben und neuer Kalkstein bildet sich. Wie genau die einzelnen Schritte aussehen und welche Reaktionen dabei ablaufen, kannst du dir im Video ansehen.
Wenn du wissen möchtest, was sich hinter den Begriffen Brennen und Löschen des Kalks, sowie Abbinden von Kalk verbirgt, empfehlen wir dir das Video Kalkstein, Branntkalk, Löschkalk.
Im Anschluss hast du die Möglichkeit, dein Wissen anhand von interaktiven Arbeitsblättern und Übungen zu festigen. Mit den neuen Informationen zum Thema Kalkkreislauf kannst du jetzt auch ein Referat halten.

Teste dein Wissen zum Thema Kalkkreislauf!

1.215.161 Schülerinnen und Schüler haben bereits unsere Übungen absolviert. Direktes Feedback, klare Fortschritte: Finde jetzt heraus, wo du stehst!

Vorschaubild einer Übung

Transkript Der Kalkkreislauf

Einen schönen guten Tag. In diesem Video möchte ich ein Thema besprechen, das in der Schule fast immer behandelt wird. Es geht um den Kalkkreislauf. Wenn man diese Problematik einmal inhaltlich zusammenfasst, so kann man sie darauf reduzieren, dass es hier um die Wanderung der Calcium-Ionen Ca²+ in der Natur geht. Und dabei spielt es erst einmal keine Rolle, ob diese Calcium-Ionen gelöst oder in fester Form vorhanden sind. Kalk trifft man in Kalkfelsen zum Beispiel auf der Insel Rügen oder in Kalkgebieten wie zum Beispiel in Rüdersdorf bei Berlin an. Dort bezeichnet man den festen Kalk der Natur als Kalkstein. Die erste Stufe des Kalkkreislaufs ist die Zersetzung der Kalkfelsen. Die Kalkfelsen bestehen aus dem Salz Calciumcarbonat CaCO3. Das ist eben dieser Kalkstein und der ist nicht wasserlöslich. Natürlich wirkt auf den Felsen die Natur ein. Als Erstes in Form des Wassers H2O. Das alleine kann dem Calciumcarbonat wenig anhaben. Es hat aber einen zweiten Verbündeten, nämlich Kohlenstoffdioxid CO2, und vereint können sie das im Wasser unlösliche Calciumcarbonat zersetzen. Wasser H2O und Kohlenstoffdioxid CO2 bilden mit dem Calciumcarbonat CaCO3 eine neue chemische Verbindung. Diese hat die Formel Ca(HCO3)2. Sie hat den chemischen Namen Calciumhydrogencarbonat. Im Unterschied zum Calciumcarbonat CaCO3, ist Calciumhydrogencarbonat Ca(HCO3)2 wasserlöslich. Das bedeutet aber auch, dass es zur Dissoziation befähigt ist. Dissoziation, das bedeutet eine Zersetzung des Calciumhydrogencarbonats unter dem Einfluss von Wasser in die entsprechenden Ionen. Das bedeutet das Calciumhydrogencarbonat Ca(HCO3)2 in 1 positiv geladenes Calciumion Ca²+ und in 2 einfach negativ geladene Hydrogencarbonationen HCO3- dissoziiert. Die gebildeten Ionen sind wasserlöslich. Der zweite Schritt des Kalkkreislaufs umfasst den Abtransport der wasserlöslichen Ionen. Das geschieht vorzugsweise in Gebirgsbächen und Flüssen. Durch die großen Wassermassen werden die Calciumionen Ca²+ und die Hydrogencarbonationen HCO3- über sehr große Strecken bewegt. Der dritte Schritt des Kalkkreislaufs ist die Verdunstung des Wassers. Das kann auf der Erdoberfläche aber auch in Höhlen geschehen. Wenn zum Beispiel das Wasser in einem unterirdischen Gang über eine nicht ganz dichte Oberfläche fließt, die mit einer Höhle darunter in Zusammenhang steht, so kann es dazu kommen, dass langsam Tropfen herausfließen und die können verdunsten. Dabei erhalten wir ein Bild, wie ich es hier links gezeichnet habe. Es passiert nämlich Folgendes: Durch die Verdunstung des Wassers können nicht mehr alle Ionen im Wasser gelöst werden. Das heißt, es kommt zu einer umgekehrten Reaktion der Dissoziation. Diese Reaktion habe ich in der ersten Gleichung oben dargestellt. Calciumionen Ca²+ und Hydrogencarbonationen HCO3- bilden das Salz Ca(HCO3)2, Calciumhydrogencarbonat. Wir wissen, dass Calciumhydrogencarbonat wasserlöslich ist. Wenn Wasser wieder auf dieses Salz käme, würde es wieder herausgewaschen werden und es könnten sich keine so schönen Gebilde wie hier abgebildet in Tropfsteinhöhlen bilden. Daher ist ein anderer Prozess noch wichtig. In den Tropfsteinhöhlen ist es in der Regel recht warm und durch diese Wärme wird das Calciumhydrogencarbonat zersetzt. Es bildet sich Kalkstein CaCO3 und gleichzeitig wird Kohlensäure H2CO3, die leicht zersetzlich ist, frei. Im Endergebnis bildet sich bei dieser Reaktion Wasser H2O und Kohlenstoffdioxid CO2. Die Tropfsteine bestehen demzufolge aus Kalkstein CaCO3. Ich möchte nun das Gesagte über den Kalkkreislauf noch einmal in einem Kreisschema zusammenfassen. Der Kalkkreislauf beginnt mit dem Kalkstein, Calciumcarbonat, CaCO3 wie man ihn zum Beispiel in Kalkfelsen findet. Kohlenstoffdioxid der Luft und Wasser durch Niederschläge CO2 und H2O wirken auf den Kalkstein CaCO3 ein. Dabei läuft eine chemische Reaktion ab. Calciumcarbonat verbindet sich mit Kohlenstoffdioxid und Wasser zu Calciumhydrogencarbonat. Calciumhydrogencarbonat hat die Formel Ca(HCO3)2. Diese chemische Verbindung ist wasserlöslich. Sie kann also dissoziieren. Im Ergebnis dieser Dissoziation bilden sich im Wasser Calciumionen Ca²+ und Hydrogencarbonationen HCO3-. Diese Ionen werden durch Flüsse und Gebirgsbäche abtransportiert und über weite Strecken bewegt. Durch die Verdunstung des Wassers in Tropfsteinhöhlen läuft die Dissoziation umgekehrt ab. Aus den Calciumionen und Calciumydrogencarbonationen bildet sich wieder Calciumhydrogencarbonat Ca(HCO3)2. Durch die warmen Bedingungen, die in Tropfsteinhöhlen vorherrschen, verliert das Calciumhydrogencarbonat Kohlenstoffdioxid CO2 und Wasser H2O. Dadurch bilden sich die Tropfsteine, die hauptsächlich aus Calciumcarbonat CaCO3 bestehen. Das ist wieder Kalkstein und damit ist der Kalkkreislauf geschlossen. Ich möchte zum Abschluss noch bemerken, dass mit Magnesiumcarbonat MgCO3 oder einem Gemisch aus Calciumcarbonat und Magnesiumcarbonat, CaCO3 mit MgCO3 ähnliche Kreisläufe beschrieben werden können. Ich freue mich, wenn ich euch helfen konnte. Alles Gute! Auf Wiedersehen.  

11 Kommentare
11 Kommentare
  1. Es wird sehr langsam gesprochen und sehr künstlich.

    Von Louise, vor 8 Monaten
  2. Bitteschön. Ich freue mich, dass das Video nützlich ist.
    Alles Gute

    Von André Otto, vor etwa 6 Jahren
  3. Dankeschön

    Von Viktoria E., vor etwa 6 Jahren
  4. Super !

    Von Bbbb Bruder, vor mehr als 6 Jahren
  5. Danke für das Lob. Das Video ist nicht mehr ganz so taufrisch. Um so mehr freue ich mich natürlich darüber, dass auch ältere Filme gut aufgenommen werden.
    Alles Gute und viel Erfolg

    Von André Otto, vor mehr als 9 Jahren
Mehr Kommentare

Der Kalkkreislauf Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Der Kalkkreislauf kannst du es wiederholen und üben.
  • Bestimme die Formeln der beteiligten Stoffe am Kalkkreislauf.

    Tipps

    Achte auf die richtigen Ladungen.

    Lösung

    Kohlenstoffdioxid und Wasser spielen die wichtigste Rollen im ersten Schritt – die Zersetzung der Kalkfelsen. Durch die beiden Stoffe wird das Calciumcarbonat $CaCO_3$ umgewandelt zu Calciumhydrogencarbonat $Ca(HCO_3)_2$. Das Carbonation ${CO_3}^{2-}$ ist zweifach negativ geladen und das Calciumion ist zweifach positiv geladen. Anders ist es bei dem Calciumhydrogencarbonat. Das Hydrogencarbonation ist immer einfach negativ geladen $({HCO_3}^-)$.

    Beide Anionen entstehen durch Deprotonierung der Kohlensäure ${H_2CO_3}$. Wird ein Proton abgegeben, also eine positive Ladung, entsteht das Hydrogencarbonat, welches einfach negativ geladen ist. Wird nun ein weiteres Proton abgegeben, entsteht das Carbonation, welches zweifach negativ geladen ist.

    Deshalb braucht man zwei Hydrogencarbonat-Ionen als Ausgleich in der Reaktion mit Calcium.

  • Nenne die einzelnen Schritte des Kalkkreislaufes.

    Tipps

    Überlege, welche Reaktionen bei den jeweiligen Vorgängen ablaufen.

    Die Reaktionen sind außerhalb der Kästchen anzubringen.

    Lösung

    Der natürliche Kalkkreislauf besteht aus drei Schritten.

    Im ersten Schritt sind zwei Reaktionen von besonderer Bedeutung: Zunächst reagieren Wasser und Kohlenstoffdioxid mit dem Calciumcarbonat ($CaCO_3$) der Kalkfelsen zum Calciumhydrogencarbonat ($Ca(HCO_3)_2$. Dieses Calciumhydrogencarbonat dissoziiert dann in Wasser zu Calcium-Ionen und zu Hydrogencarbonat-Ionen.

    • $Ca(HCO_3)_2$ $\rightleftarrows$ $Ca^2+$ + $2HCO_3$
    Im zweiten Schritt läuft keine direkte Reaktion ab. Im dritten Schritt jedoch erfolgen wieder zwei Reaktionen. Zunächst reagieren die im wassergelösten Calcium- und Hydrogencarbonat-Ionen wieder zum Calciumhydrogencarbonat. Die Dissoziation wird umgekehrt.
    • $Ca^2+$ + $2HCO_3$ $\rightleftarrows$ $Ca(HCO_3)_2$
    Das Calciumhydrogencarbonat wird durch die Wärme zersetzt zu Calciumcarbonat und Kohlensäure.
    • $Ca(HCO_3)_2$ $\to$ $CaCO_3$ + $H_2CO_3$
    Diese Kohlensäure ist aber nicht sehr beständig und reagiert deshalb gleich zu Kohlenstoffdioxid und Wasser.
    • $H_2CO_3$ $\to$ $H_2O$ + $CO_2$

  • Erkläre, wie Kalk im Haushalt entstehen kann.

    Tipps

    $Ca(HCO_3)_2 \rightarrow CaCO_3 + H_2O + CO_2$

    Lösung

    Im Haushalt läuft im wesentlichen der dritte Schritt des Kalkkreislaufes statt – die Verdunstung des Wassers. Unser Leitungswasser enthält in der Regel oft sehr viele Calcium-, Hydrogencarbonat- und Magnesium-Ionen, welche das sogenannte harte Wasser hervorrufen. Je höher die Konzentration an Ionen ist, desto härter ist das Wasser. Kocht man dieses Wasser nun z.B. im Wasserkocher auf, passiert dieselbe Reaktion wie in den Tropfsteinhöhlen, nur viel schneller. Die Calciumionen und Hydrogencarbonat reagieren wieder zum Calciumhydrogencarbonat, welches durch die Wärme im Kocher zu Calciumcarbonat (Kalk), Wasser und Kohlenstoffdioxid, welches aufsteigt, reagiert. Nach und nach lagert sich der Kalk an den Wänden ab. Kalk kann ganz einfach mit verdünnten Säure entfernt werden.

  • Erschließe, welche Objekte zur Entfernung von Kalk nützlich sind.

    Tipps

    Säuren können Kalk entfernen.

    Lösung

    Säuren besitzen die Fähigkeit, Kalk zu entfernen. In der Zitrone befindet sich die Citronensäure und in der Cola die Phosphorsäure. Besonders gut ist aber auch Essigsäure geeignet, die sich zum Beispiel in Essig oder Essigessenz befindet. Der Nachteil hier ist der stechende Geruch. Die Essigsäure reagiert mit dem Kalk zu Calciumacetat und Kohlensäure.

    • $2~CH_3COOH + CaCO_3 \rightarrow Ca(CH_3COO)_2 + H_2CO_3$
    Das entstandene Calciumacetat kann ganz einfach mit Wasser weggewaschen werden und die Kohlensäure zerfällt in Wasser und Kohlenstoffdioxid.

    Grundsätzlich gilt für alle Säuren:

    • $2~H^+ + CaCO_3 \rightarrow Ca^{2+} + H_2CO_3$

  • Bestimme die drei Schritte des natürlichen Kalkkreislaufs.

    Tipps

    Bedenke, dass es sich hierbei um den natürlichen Kalkkreislauf handelt.

    Lösung

    Man unterscheidet zwischen dem natürlichen und dem technischen Kalkreisklauf. Wir behandeln in dieser Übung nur den natürlichen Kalkkreislauf. Dieser besteht aus drei Schritten. Zunächst erfolgt die Zersetzung der Kalkfelsen, welche aus Calciumcarbonat ($CaCO_3$) bestehen. Calciumcarbonat ist nicht wasserlöslich. Wasser und Kohlenstoffdioxid wirken auf den Kalkfelsen ein. Zusammen können sie das Calciumcarbonat zersetzen. Es entsteht das Calciumhydrogencarbonat, welches wasserlöslich ist. Es dissoziiert in Calcium-Ionen und Hydrogencarbonat-Ionen. Danach folgt der zweite Schritt. Bei diesem erfolgt der Abtransport dieser Ionen, z.B. in Flüsse. Der letzte und dritte Schritte ist die Verdunstung des Wassers. Hier erfolgt die Umkehrung der Dissoziation. Die Calcium- und Hydrogencarbonat-Ionen reagieren wieder zu Calciumhydrogencarbonat. Durch die Wärme reagiert dieses wieder zu Calciumcarbonat, Wasser und Kohlenstoffdioxid und der Kreislauf beginnt von vorn.

  • Formuliere die Reaktionsgleichungen von Magnesiumcarbonat.

    Tipps

    Achte auf den Ladungsausgleich.

    Beachte die Reaktionsart.

    Lösung

    Calcium und Magnesium bilden beide zweiwertige Kationen, da sie beide in der zweiten Hauptgruppe stehen. Die Reaktionen von Magnesiumcarbonat sind daher vergleichbar mit denen von Calciumcarbonat.

    Zunächst reagiert das Magnesiumcarbonat mit Wasser und Kohlenstoffdioxid zu Magnesiumhydrogencarbonat. Auch Magnesium ist wie Calcium zweifach positiv geladen, deshalb braucht man auch hier zweimal das Hyrogencarbonation. Das Magnesiumhydrogencarbonat kann genauso wie das Calciumhydrogencarbonat in Wasser zu Magnesium-Ionen und Hydrogencarbonat-Ionen reagieren. Magnesiumhydrogencarbonat kann dann durch Wärme wieder zu Magnesiumcarbonat und Kohlensäure reagieren. Aufgrund der schlechten Beständigkeit der Kohlensäure zerfällt diese wieder in Kohlenstoffdioxid und Wasser.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.781

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.835

Lernvideos

36.606

Übungen

33.941

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden