30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Magnesium 14:35 min

Textversion des Videos

Transkript Magnesium

Guten Tag und herzlich willkommen. In diesem Video geht es um das chemische Element Magnesium. Der Film gehört zur Reihe Elemente. An Vorkenntnissen solltest du die Chemie der Basen, Säuren und Salze gut beherrschen. Im Film möchte ich dir eine Übersicht über das chemische Element Magnesium und seine Verbindungen liefern. Der Film besteht aus 9 Abschnitten. 1. Entdeckung 2. Vorkommen 3. Stellung im Periodensystem der Elemente 4. Eigenschaften 5. Reaktionen 6. Metall und Legierungen 7. Physiologie 8. Verbindungen und 9. Zusammenfassung

  1. Entdeckung Verbindungen des Magnesiums waren bereits im Mittelalter gut bekannt. 1755 stellte der britische Chemiker Black über die Magnesiumverbindungen eine Übersicht zusammen. 1808 gelang es Humphry Davy Magnesiumamalgam herzustellen. Davy gilt als Entdecker des Magnesiums. Erst 1828 konnte der französische Forscher Bussy metallisches Magnesium gewinnen.

  2. Vorkommen Magnesium hat das chemische Symbol Mg. Mit 1,94% in der Erdhülle nimmt Magnesium unter den Elementen den 8.Platz ein. Im Mittelalter kannte man schon sehr gut magnesis alba MgCO3 Magnesiumcarbonat. Außerdem war magnesia MgO, das ist Magnesiumoxid, wohlbekannt. Heute kennen wir eine Reihe von Magnesiummineralen: Kiserit, Magnesiumsulfalt mit Kristallwasser. Epsomit, Magnesiumsulfalt mit 7 Molekülen Kristallwasser. Hier noch eine Abbildung von reinem Magnesiumsulfat. Es wird als Trockenmittel verwendet. Man bezeichnet das auch als Bittersalz. Magnesit ist Magnesiumcarbonat. Dolomit besteht aus Calciumcarbonat und Magnesiumcarbonat. Es sind Carbonate. Kainit ist Kaliumchlorid mit Magnesiumsulfat und 6 Molekülen Kristallwasser. Carnallit ist Kaliumchlorid mit Magnesiumchlorid und 6 Molekülen Kristallwasser. Es handelt sich hier um ein Chlorid. Olivin kommt als Edelstein Peridot vor, es ist ein Silikat. Serpentin, auch Asbest genannt, ist ebenfalls ein Silikat. Es enthält Hydroxidgruppen. Beides sind Silikate. Der Spinell hat die Formel MgAl2O4, es ist ein Edelstein.

  3. Stellung im Periodensystem der Elemente Im Periodensystem der Elemente befindet sich Magnesium an dieser Stelle. Es gehört zur zweiten Hauptgruppe. Das sind die Erdalkalimetalle. Folglich ist Magnesium ein Metall. Seine Oxidationszahl in Verbindungen beträgt +2. Seinen Namen erhielt es wahrscheinlich nach der Stadt Magnesia, einer ehemaligen Stadt in der heutigen Türkei.

  4. Eigenschaften Magnesium ist ein silbrig weißes, unedles Metall. Es ist ein Leichtmetall, hat eine Dichte von 1,7 g/cm³. Damit liegt es zwischen Natrium und Aluminium. Es ist niedrig schmelzend bei 650°C. Magnesium schmilzt höher als Zink und etwa bei der gleichen Temperatur wie Aluminium. Die Siedetemperatur beträgt 1090°C. Magnesium ist weich, die Mohshärte beträgt 2,5. Damit ist es härter als Blei, etwa so hart wie Zink und etwas weicher als Gold.

  5. Reaktionen Magnesium reagiert langsam an der Luft mit Sauerstoff und bildet eine unregelmäßige Oxidschicht. Die Verbrennung zu Magnesiumoxid ist stark exotherm. Magnesium reagiert mit fast allen Säuren, auch mit schwachen. Mit Flusssäure reagiert Magnesium nicht, es kommt hier zur Passivierung. Auch mit Basen reagiert Magnesium gar nicht oder nur sehr langsam. Gut reagiert Magnesium mit den Halogenen. Es bilden sich Salze, Halogenide. Magnesium wird durch verschiedene sauerstoffhaltige Verbindungen oxidiert, zum Beispiel durch Kohlenstoffmonoxid, durch nitrose Gase und durch Schwefeldioxid. Magnesium reagiert bei 300°C mit Stickstoff. Es entsteht Magnesiumnitrit.

  6. Metall und Legierungen Heutzutage wird Magnesium auf 2 Wegen hergestellt. (a) durch Schmelzflusselektrolyse. Magnesiumchlorid wird trocken elektrolysiert, an der Katode bildet sich Magnesium. Alternativ wird (b) die thermische Reduktion verwendet. Zu Dolomit wird Schwerspat hinzugegeben und mit Ferrosilicium reduziert. Anschließend erfolgt Destillation, erinnert euch an die Siedetemperatur, nur 1090°C. Metallisches Magnesium wird beim Kroll-Prozess verwendet, um Titan herzustellen. Da es ein starkes Reduktionsmittel ist, können auch andere Metalle gewonnen werden. So zum Beispiel Uran, Nickel, Kupfer und Chrom. Zugabe zu Stahl führt zur Entschwefelung. Zugabe beim Kugelgraphitguss entscheidet darüber, dass der Guss bessere Eigenschaften als Gusseisen besitzt. Magnesium wird für die Herstellung von Unterwasserfackeln verwendet. Man benutzte es früher, manchmal noch heute, als chemisches Blitzlicht. Magnesium dient der Herstellung des berühmten Grignardreagenzes. Metallisches Magnesium ist mit verschiedenen Elementen legierbar: mit Aluminium, mit Mangan, mit Silicium und mit Zink. Mit 10% Aluminium legiertes Magnesium bezeichnet man auch als Elektron.

  7. Physiologie Der Mensch benötigt Magnesium. Die Pflanze ebenfalls, sie enthält es im Chlorophyll. Der Mensch fügt dem Boden Magnesium durch Düngung zu. Herrscht Mangel an Magnesium, so kommt es zu unangenehmen Folgen, zu Kopfschmerzen, zu Depression oder zu Herzbeschwerden. Mangel an Magnesium kann man beheben, indem man sich richtig ernährt. Folgende Lebens- bzw. Genussmittel enthalten Magnesium: Vollkornbrot, Mineralwasser, Geflügel, Fisch, Kartoffeln, Kohlrabi, Bananen und sogar Schokolade.

  8. Verbindungen Magnesiumoxid MgO. Magnesiumoxid hat eine sehr hohe Schmelztemperatur von 2800°C. Es ist daher gut geeignet, um Schmelzöfen herzustellen. Magnesiumhydroxid Mg(OH)2. Die Verbindung ist eine schwache Base und reagiert vollständig mit der Magensäure, wobei es zu neutralen Verbindungen kommt. Ein einfaches Mittel gegen Übersäuerung des Magens. Magnesiumperoxid MgO2. Man verwendet es in Kosmetika, zur Desinfektion und als Bleichmittel. Magnesiumfluorid MgF2, diese Verbindung hat einen niedrigen Brechungsindex. Man kann es daher zum Beispiel in diese Antireflexkamera verbauen. Magnesiumchlorid MgCl2 dient der Schmelzflusselektrolyse für die Herstellung von Magnesium. Aus Magnesiumbromid kann man das chemische Element Brom gewinnen. Magnesiumcarbonat MgCO3 habt ihr sicher schon beim Sport gesehen, es wird gegen schweißige Hände verwendet. Magnesiumnitrat Mg(NO3)2, dieses Salz verwendet man unter anderem als Dünger. Magnesiumperchlorat Mg(ClO4)2 ist ein exzellentes Trockenmittel. Magnesiumcarbid Mg2C3 gibt bei Zugabe von Wasser Probin, eine organische Verbindung. Magnesiumhydrid MgH2 liefert bei Zugabe von Wasser Wasserstoff, man kann es verwenden, um Metallschaum herzustellen. Magnesiumnitrid Mg3N2 hydrolisiert ebenfalls, man kann es zur Herstellung von Ammoniak im Labor verwenden. Und schließlich Magnesiumsulfid MgS, es wird unter anderem für die Enthaarung verwendet.

Ich danke für eure Aufmerksamkeit, ich hoffe, ihr seid noch nicht müde. Ich wünsche euch alles Gute, auf Wiedersehen.

2 Kommentare
  1. Die wurde rausgestrichen, weil das Video ohnehin schon sehr lang ist. Das werden Produktion und / oder Redaktion veranlasst haben.
    Alles Gute

    Von André Otto, vor etwa 5 Jahren
  2. 9. Punkt wurde vergessen (Zusammenfassung). ;)

    Von U Gschmack, vor etwa 5 Jahren

Magnesium Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Magnesium kannst du es wiederholen und üben.

  • Gib die Verbindungsnamen der folgenden Formeln an.

    Tipps

    Diejenigen Anionen, die außer Sauerstoff noch ein weiteres Element enthalten, tragen in ihrem Namen einen Hinweis auf dieses Element, der auf die lateinische Bezeichnung des Elements verweist.

    Lösung

    Magnesiumchlorid und Magnesiumbromid enthalten beide bereits direkt den Namen der Elemente, die sie enthalten: Chlor und Brom. Die Formeln sind also $MgCl_2$ und $MgBr_2$.

    Der Name von Magnesiumoxid leitet sich ab vom griechischen Oxygenium, was für Sauerstoff steht. Dementsprechend lautet die Formel $MgO$.

    Die drei Verbindungen Magnesiumsulfat, Magnesiumnitrat und Magnesiumcarbonat tragen im Namen ihrer Anionen alle Hinweise auf das in ihnen enthaltene Element. Sulfat kommt vom lateinischen Sulpur bzw. dem griechischen Sulphur und steht für den Schwefel. Daraus ergibt sich die Formel $MgSO_4$. Nitrat kommt vom lateinischen Wort Nitrogenium und steht für Stickstoff. Dementsprechend lautet die zugehörige Formel $Mg(NO_3)_2$. Carbonat, vom lateinischen Wort Carbo stammend, steht für Kohlenstoff und die Formel ist $MgCO_3$.

  • Gib Informationen zur Stellung des Magnesiums im Periodensystem an.

    Tipps

    Einige Antwortmöglichkeiten schließen sich gegenseitig aus. Gib darauf Acht.

    Verwende auch die Informationen aus dem obenstehenden Bild, um dich der Lösung anzunähern.

    Lösung

    Magnesium trägt, wie das Bild zeigt, die Ordnungszahl 12. Es sitzen also 2 Elektronen auf der ersten Schale, 8 Elektronen auf der zweiten Schale und es bleiben noch 2 Elektronen, die sich auf der äußersten Schale befinden. Da für die Hauptgruppenelemente die Zahl der Außenelektronen gleich der Hauptgruppennummer ist, können wir schlussfolgern, dass sich Magnesium in der II. Hauptgruppe befindet. Alle Metalle dieser Gruppe werden als Erdalkalimetalle bezeichnet. Da volle Schalen die stabilste Anordnung darstellen, ist das Magnesium bestrebt seine beiden Außenelektronen abzugeben, was ihm die Oxidationszahl +2 in Verbindungen verschafft. Die Hauptgruppennummern beginnen auf der linken Seite bei der Zahl 1 und schließen rechts mit der Zahl 8 ab. Dementsprechend steht Magnesium auf der linken Seite und aufgrund seiner niedrigen Ordnungszahl auch in der oberen Hälfte.

  • Erkläre den Einsatz von Magnesiumhydroxid gegen Sodbrennen mit einem Experiment.

    Tipps

    Säuren sind Protonendonatoren und Basen Protonenakzeptoren.

    Lösung

    Gibt man Magnesiumhydroxid zu Wasser und versetzt dies mit Universalindikator, so färbt sich die Lösung blau. Grund dafür ist das Vorhandensein von Hydroxid-Ionen $OH^-$.

    Gibt man Magensäure, also Salzsäure, zu Wasser und dazu ein wenig Universalindikator, dann verfärbt sich die Lösung aufgrund der Protonen $H^+$ rot.

    Gibt man beide Lösungen zusammen, so entsteht eine neutrale Lösung, welche durch pH-Indikator grün gefärbt ist. Aus Protonen und Hydroxidionen entsteht nämlich Wasser. Das Magnesiumhydroxid neutralisiert also die Säure. Daher kann es auch gut bei der Behandlung von Sodbrennen genutzt werden.

    $Mg(OH)_2 + 2~HCl \rightarrow MgCl_2 + 2~H_2O$

  • Beschreibe die Eigenschaften von Magnesium.

    Tipps

    Um die Lücken zu füllen, findet man manchmal Hinweise in den Sätzen vor bzw. nach der Lücke.

    Lösung

    Gold ist ein edles Metall, das heißt es reagiert sehr ungern. Da Magnesium genau am anderen Ende der Reaktivitätsskala steht, muss es mit unedel beschrieben werden. Ein typisches Metall wie Eisen hat eine Dichte von fast $8 \frac{g}{cm^{3}}$ und dementsprechend gehört Magnesium mit weniger als einem Viertel davon zu den Leichtmetallen. Bei Raumtemperatur ist Magnesium fest. Die erste Aggregatzustandsänderung tritt bei 650 °C ein. Gesucht ist also das Verb schmelzen. In der nächsten Lücke ist die nächste Aggregatzustandsänderung gesucht; diesmal allerdings ein Substantiv: Siedepunkt. Verglichen mit Siede- und Schmelzpunkten von anderen Metallen sind die von Magnesium relativ gering. Eisen hat zum Beispiel seinen Schmelzpunkt bei 1538 °C. Wenn die Mohshärte niedrig ist, so muss das Metall im Umkehrschluss weich sein.

  • Ermittle die fehlenden Bestandteile der Reaktionsgleichungen.

    Tipps

    Die Zahlen können nur direkt vor einer Formel stehen. Das vereinfacht die Aufgabe bereits ein wenig.

    Das Elementsymbol $F$ steht für das Halogen Fluor. Die gleiche Reaktion kann man auch für Chlor formulieren.

    Lösung

    Reaktion von Magnesium mit einer Säure

    $Mg + 2~H^+ \rightarrow H_2 + Mg^{2+}$

    Man sollte zunächst die Anzahl der Teilchen je Atomsorte auf beiden Seiten vergleichen. Dabei fällt auf, dass sich auf der linken Seite nur ein Wasserstoffteilchen befindet, rechts allerdings zwei. Um dies auszugleichen, muss man lediglich eine $2$ vor das $H^+$ setzen. Links steht bereits ein Magnesiumteilchen, rechts fehlt dies noch. Des Weiteren hat die linke Seite einen Ladungsüberschuss von +2. Daraus ergibt sich, dass man $Mg^{2+}$ in die rechte Lücke eintragen muss. Danach ist dann alles ausgeglichen.

    Reaktion von Magnesium mit Sauerstoff

    $2~Mg + O_2 \rightarrow 2~MgO$

    Man beginnt wieder damit, die beiden Atomsorten auf der linken und rechten Seite der Gleichung zu vergleichen. Es fällt auf, dass sich rechts zwei Teilchen Sauerstoff befinden und links keins. Es gibt nun die Möglichkeit, $O$ oder $O_2$ in die Lücke auf der linken Seite einzusetzen, aber Sauerstoff kommt normalerweise nur als zweiatomiges Molekül vor; also muss $O_2$ eingesetzt werden. Es herrscht noch ein Ungleichgewicht zwischen Magnesium auf der linken und auf der rechten Seite. Um dies zu beheben, muss man links vor das Magnesium die $2$ setzen.

    Reaktion von Magnesium mit Fluor

    $Mg + F_2 \rightarrow MgF_2$

    In dieser Reaktion fehlt einzig das Reaktionsprodukt. Es gilt sich zu entscheiden zwischen $MgF$ und $MgF_2$. Da Magnesium zweifach positiv geladen und das Fluor (wie alle Halogene in Verbindungen) einfach negativ geladen ist, benötigt es pro Formeleinheit Magnesiumfluorid zwei Fluorid-Ionen und ein Magnesium-Ion. Daraus folgt die Formel $MgF_2$.

  • Erkläre die Reaktion beim Löschen eines Magnesiumbrandes.

    Tipps

    Die Beschreibung der Reaktionsprodukte im Text könnte dir helfen zu verstehen, was bei der Reaktion entstanden sein könnte.

    Die Tatsache, dass schwarzer und weißer Feststoff nach der Reaktion vorhanden ist, deutet darauf hin, dass zwei verschiedene Reaktionsprodukte entstanden sind.

    Lösung

    Vorüberlegungen

    Da Magnesium ein Reduktionsmittel ist und somit seinen Reaktionspartnern Sauerstoff entzieht, ergeben sich folgende Vermutungen: Magnesium entzieht dem Kohlendioxid den Sauerstoff und reagiert zum Magnesiumoxid. Kohlendioxid, dem Sauerstoff entzogen wird, reagiert zu elementarem Kohlenstoff.

    Bestätigung durch das Experiment

    Magnesiumoxid ist ein weißes Pulver und Kohlenstoff ist als Graphit schwarz. Da die Farben der Reaktionsprodukte mit den Farben dieser beiden Stoffe übereinstimmen, ist es sehr naheliegend die eingangs formulierte Vermutung zu bestätigen.

    Aufstellen der Reaktionsgleichung

    Zuerst gilt es, die Namen der Substanzen in chemische Formel zu fassen:
    Magnesium $ \rightarrow Mg$
    Kohlen(stoff)dioxid $\rightarrow CO_2$
    Magnesiumoxid $ \rightarrow MgO$
    Kohlenstoff $ \rightarrow C$

    Die Reaktionsgleichung ohne Ausgleichen lautet dann folgendermaßen:

    $Mg + CO_2 \rightarrow MgO + C$

    Augenscheinlich ist die Zahl der Sauerstoffatome links zu groß. Konsenquenterweise muss man rechts vor das $MgO$ eine $2$ setzen. Das ergibt:

    $Mg + CO_2 \rightarrow 2~MgO + C$

    Aber das führt zu einem Ungleichgewicht zwischen Magnesium auf der linken und der rechten Seite. Also setzt man vor $Mg$ auf der linken Seite noch eine $2$ und die Reaktion ist ausgeglichen:

    $2~Mg + CO_2 \rightarrow 2~MgO + C$