Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Kalium

Du möchtest schneller & einfacher lernen?

Dann nutze doch Erklärvideos & übe mit Lernspielen für die Schule.

Kostenlos testen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 3.7 / 6 Bewertungen
Die Autor*innen
Avatar
André Otto
Kalium
lernst du in der 8. Klasse - 9. Klasse

Kalium Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Kalium kannst du es wiederholen und üben.
  • Nenne die biologische und physiologische Bedeutung von Kalium-Ionen.

    Tipps

    Die abgebildete Natrium-Kalium-Pumpe ist ein in die Zellmembran verankertes Protein ($3~Na^+/ 2~K^+$-ATPase). Dieses System dient der Aufrechterhaltung von Zellen.

    Die Zellatmung erfolgt in den Mitochondrien der tierischen Zelle.

    Lösung

    Kalium hat eine große biologische Bedeutung bei dem Einsatz als Düngemittel oder bei Funktionen im menschlichen Körper.

    Wasserlösliche Kaliumsalze wie Kaliumnitrat oder Kaliumphosphat werden als Düngemittel für Pflanzen eingesetzt, da diese die Kaliummineralien aus dem Boden (z.B. Kaliumsilicate oder Kaliumglimmer) nur schwer aufschließen können.

    Bei den Lebewesen dient Kalium als essenzieller Mineralstoff zur Erhaltung des Lebens. Es beteiligt sich als Kation ($K^+$) an vielen physiologischen Prozessen, wie z.B.

    • Reizbildung und Reizleitung,
    • Regulation des Zellwachstums,
    • Aufrechterhaltung eines normalen Blutdrucks,
    • Regulation des Säuren-Basen-Gleichgewichtes,
    • Beeinflussung der Freisetzung von Hormonen (z. B. Insulin) und
    • Kohlenhydratverwertung und Eiweißsynthese.
  • Bestimme die stöchiometrische Zusammensetzung folgender Kaliumverbindungen.

    Tipps

    Kalium ist ein Alkalimetall, d.h. ein Element der ersten Hauptgruppe, und gleicht in der salzartigen Zusammensetzung den Gruppenhomologen wie z.B. Natrium und Lithium.

    Kalium hat in Verbindungen die Oxidationsstufe +1.

    Die Oxidationsstufe entspricht bei salzartigen Verbindungen der Ionenladung.

    Lösung

    Bei den obigen Verbindungen handelt es sich um Oxide, Hydroxide und Carbonate des Kaliums.

    Bei der Reaktion von Kalium mit Sauerstoff bildet sich das Kaliumhyperoxid:

    • $\overset{\pm 0}{K} + \overset{\pm 0}{O_2} \rightarrow \overset{+1}{K}\overset{-0,5}{O_2}$.
    Bei der Reaktion mit Sauerstoff kann das Kalium allerdings auch zum Kaliumperoxid oxidiert werden, welches mit metallischem Kalium zum Kaliumoxid reduziert werden kann (Reduktion des Sauerstoffs und Oxidation des metallischen Kaliums):

    • $2~K + \overset{\pm 0}{O_2} \rightarrow K_2\overset{-1}{O}_2$
    • $K_2\overset{-1}{O}_2 + 2~\overset{\pm 0}{K} \rightarrow 2~K_2\overset{-2}{O}$.
    Eine andere wichtige Verbindung ist das Ätzkali, welches in wässriger Lösung auch als Kalilauge bezeichnet wird. Dieses Salz ist eine starke Base, die bei der Umsetzung von Kalium mit Wasser entsteht (Redoxreaktion):

    • $2~\overset{\pm 0}{K} + 2~\overset{+1}{H}_2O \rightarrow 2~\overset{+1}{K}OH + \overset{\pm 0}{H_2}$.
    Aus der Kalilauge kann das bedeutsame Treibmittel (z.B. als Backpulver) Pottasche gewonnen werden, indem Kohlenstoffdioxid in die Basenlösung eingeleitet wird (Säure-Base-Reaktion):

    • $2~KOH + CO_2 \rightarrow K_2CO_3 + H_2O$.
  • Begründe die äußerst hohe Reaktivität von Kalium.

    Tipps

    Jede Hauptgruppe ist eine Spalte (senkrecht) und jede Periode ist eine Zeile (waagerecht) im Periodensystem.

    Kaliumchlorid ist ein Salz.

    Kalium hat in Verbindungen die Oxidationsstufe +1. Es liegt als Ion vor.

    Lösung

    Alkalimetalle sind Leichtmetalle, die nur ein einziges Valenzelektron besitzen. Durch diese elektronische Struktur sind viele Eigenschaften zu begründen:
    Kalium hat in Verbindungen immer die Oxidationsstufe +1 (d.h. es liegt als $K^+$-Ion vor), weil es durch die Abgabe eines Elektrons eine volle Valenzschale erhält (siehe Bild).

    Nach der Oktettregel streben alle Atome in Verbindungen eine volle Außenschale an. Deswegen liegen z.B. die Halogene oder auch Stickstoff in der Atmosphäre immer molekular ($N_2,~Cl_2, \dots$) vor. Dadurch erreicht jedes Atom formal 8 Außenelektronen, wenn es sich mit einem zweiten Atom die Elektronen teilt (Elektronenpaarbindung, Lewis-Schreibweise).
    Bei den Alkalimetallen kommt es allerdings nicht zur Ausbildung von Elektronenpaarbindungen, sondern zur Ausbildung von Ionenverbindungen (Salzen). Dadurch dass die Ionisierungsenergie der Alkalimetalle sehr klein ist (leichte $e^-$-Abgabe) und die Elektronenaffinität der Halogene sehr hoch ist (erreichen der $8~e^-$ durch Aufnahme eines Elektrons), bilden beide Elemente Salzverbindungen.

    • $2~\overset{\pm 0}{K} + \overset{\pm 0}{Cl_2} \rightarrow 2~\overset{+1}K\overset{-1}Cl + \Delta E$
  • Vervollständige folgende Reaktionsgleichungen.

    Tipps

    Die Reaktion von Kalilauge mit Kohlenstoffdioxid ist eine Säure-Base Reaktion.

    Kaliumazid ist Ausgangsstoff zur Kaliumherstellung im Labor.

    Lösung

    Eine der obigen Verbindungen ist Ätzkali, welches in wässriger Lösung auch als Kalilauge bezeichnet wird. Dieses Salz ist eine starke Base, die bei der Umsetzung von Kalium mit Wasser entsteht (Redoxreaktion). Aus der Kalilauge kann Pottasche gewonnen werden, indem Kohlenstoffdioxid in die Basenlösung eingeleitet wird (Säure-Base-Reaktion):

    • $2~KOH + CO_2 \rightarrow K_2CO_3 + H_2O$.
    Wird hingegen das Kohlenstoffdioxid in eine wässrige Lösung des Kaliumhyperoxides eingeleitet, so entstehen das Kaliumhydrogencarbonat und Sauerstoff (Komproportionierung):

    • $4~K\overset{-0,5}{O_2} + 4~C\overset{-2}{O_2} + 2~H_2\overset{-2}{O} \rightarrow 4~KHC\overset{-2}{O_3} + 3~\overset{\pm 0}{O_2}$.
    Aus dem Kaliumazid ($KN_3$) kann durch Erhitzen Kalium gewonnen werden:

    • $2~KN_3 \xrightarrow{°C} 2~K + 3~N_2$.
    Das gebildete Kalium kann nicht mit dem Stickstoff weiter reagieren, allerdings bildet es mit der Stickstoffverbindung Ammoniak ein Amin (Redoxreaktion/Disproportionierung):

    • $2~\overset{\pm 0}{K} + 2~\overset{-3}{N}\overset{+1}{H_3} \rightarrow 2~\overset{+1}{K}\overset{-3}{N}\overset{+1}{H_2} + \overset{\pm 0}{H_2}$.
  • Entscheide, welche Kaliumverbindungen als Oxidationsmittel dienen können.

    Tipps

    Das Kalium behält bei Redoxprozessen die Oxidationsstufe bei.

    Das Oxidationsmittel enthält ein Element in einer hohen Oxidationsstufe (+5).

    Das gesuchte Oxidationsmittel enthält ein Atom aus der 7. Hauptgruppe.

    Lösung

    Bei den Kaliumsalzen dienen die Chlorate (${ClO_3}^-$), Bromate (${BrO_3}^-$) und Iodate (${IO_3}^-$) als Oxidationsmittel. Das bedeutet, dass diese Substanzen in einer Redoxreaktion Elektronen aufnehmen und damit den Reaktionspartner oxidieren, da dieser die Elektronen abgibt. Eine Beispielreaktion ist z.B. die Oxidation von Kohlenstoff mit Kaliumchlorat:

    Oxidation: $3~\overset{\pm 0}{C} + 6~O^{2-} \rightarrow 3~\overset{+4}{C}O_2 + 12~e^-$

    Reduktion: $2~K\overset{+5}{Cl}O_3 + 12~e^- \rightarrow 6~O^{2-} + 2~K\overset{-1}{Cl}$ _______________________________________________

    Redox: $2~KClO_3 + 3~C \rightarrow 2~KCl + 3~CO_2$.

  • Bestimme die Trends im Periodensystem am Beispiel der Alkalimetalle.

    Tipps

    Kalium hat eine Mohshärte von 0,4 und Lithium eine von 0,6.

    Kalium hat eine geringere Ionisierungsenergie als Lithium.

    Wasserstoff ist gasförmig, leitet nicht den elektrischen Strom und auch keine Wärme.

    Lösung

    Zu den Alkalimetallen gehören Lithium ($Li$), Natrium ($Na$), Kalium ($K$), Rubidium ($Rb$), Caesium ($Cs$) und Francium ($Fr$). Wasserstoff gehört nicht mit in die Gruppe der Alkalimetalle, da es ein klassisches Nichtmetall ist (gasförmig, elektrisch nicht leitend). Die Alkalimetalle stehen in einer Gruppe, da sie viele gemeinsame Eigenschaften haben. Dazu gehören die metallischen Eigenschaften wie z.B.

    • Glanz,
    • Wärmeleitfähigkeit,
    • elektrische Leitfähigkeit und
    • mechanische Verformbarkeit (Alkalimetalle sind Leichtmetalle, die so weich sind, dass sie sich mit einem Messer schneiden lassen).
    Außerdem bilden alle Alkalimetalle (M) in Wasser eine Lauge der Form $MOH$ unter Freisetzung von Wasserstoff und reagieren mit Halogenen ($X_2$) zu salzartigen Verbindungen der Zusammensetzung $MX$. Die Ursache für die gleiche Reaktionsbereitschaft besteht darin, dass alle Alkalimetalle nur ein einziges Valenzelektron besitzen, durch dessen Abgabe das Metall die stabileren 8 Valenzelektronen enthält (Edelgaskonfiguration).

    Innerhalb der Gruppe (d.h. von Lithium → Francium) sinken die Schmelzpunkte, die Mohshärte und die Elektronegativität. Im Allgemeinen besitzen die Alkalimetalle die geringsten Elektronegativitäten im Periodensystem (0,98 (Li) bis 0,79 (Cs)). Die Elektronegativität ist ein Maß dafür, wie stark ein Element die Elektronendichte zu sich zieht (ermittelt aus der Elektronenaffinität und der Ionisierungenergie). Innerhalb einer Periode steigt die Elektronegativität von links nach rechts an, allerdings sinkt sie innerhalb jeder Gruppe von oben nach unten.