30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Puffersysteme im Blut 11:39 min

Textversion des Videos

Transkript Puffersysteme im Blut

Hallo und ganz herzlich willkommen! In diesem Video geht es um „Puffersysteme im Blut“.

Funktionen des Blutes:
Blut in unserem Körper hat viele Funktionen. 1) Stoffaustausch zwischen den Organen Blut transportiert verschiedene Stoffe zwischen den Körperorganen. Bei den Stoffen handelt es sich um Wasser, Salze, Proteine und Gase. 2) Wärmeregulierung Die hohe spezifische Wärmekapazität des Wassers verleit dem Blut die Fähigkeit, die Körpertempera­tur in einem engen Bereich konstant zu hal­ten. Ein gesunder menschlicher Körper hat eine Tem­peratur von 36,3 bis 37,4 °C. 3) Nährstoffaufnahme Die aufgenommene Nahrung wird auf ihrem Weg in den Dünndarm enzymatisch abgebaut. Ein Teil der gebildeten Moleküle sind die „Nährstoffe“. Nähr­stoffe gelangen durch Osmose über die Wand des Dünndarms in das Blut.

pH – Wert: Stoffwechselvorgänge können nur in einem en­gen pH – Intervall ablaufen. Ein gesunder menschli­cher Körper hat einen pH – Wert von 7,35 – 7,45.

Regelung des pH – Wertes: Wenn wir von einer Regelung des pH - Wertes spre­chen, so meint man damit: 1) Es geht NICHT um ein stark saures oder ein stark basisches Milieu. Die Einstellung erfolgt stets für neutrale bzw. neutralnahe Werte im pH – Bereich von etwa 5 bis 9. 2) pH – Regelung erfolgt nur bei Zugabe bis zu einer Menge von etwa 10 % Volumen starker Säure/Base (bezogen auf die Lösung).

Die Beschränkungen sind klar: 1) Starke Säuren und Basen werden durch geringe Mengen starker Basen/Säuren NUR TEILWEISE neu­tralisiert. 2) Im Bereich des pH – Wertes von 5 bis 9 sind die Konzentrationen der H+ - Ionen und OH- - Ionen ge­ring. Sie können daher nur etwa 1/10 des Volumens an starker Base/starker Säure (bezogen auf die Lösung) neutralisieren.

Puffersysteme: Puffersysteme, kurz Puffer, gewährleisten die Stabili­tät des pH – Wertes innerhalb enger Gren­zen. Wir wollen uns nicht mit der Zusammensetzung eines Puffers beschäftigen. Wichtiger ist zu klären, welche Eigenschaften eine Pufferlösung besitzen muss. Das sind genau zwei: 1) Ein Puffer reagiert mit Säuren und Basen gleicher­maßen. 2) Das Puffersystem hält den gewünschten pH – Wert in gewissen Grenzen konstant. In manchen Puffern wird die Neutralisation von Säu­ren UND Basen von EINEM EINZIGEN wirksamen Teilchen realisiert. Dieses Teilchen ist somit amphoter, ein Ampholyt. Ein gewünschter pH – Wert kann nur empirisch er­reicht werden. Das geschieht durch die Wahl eines ge­eigneten Puffers.

Blutpuffer: Blutpuffer ist die Bezeichnung für das komplexe Puf­fersystem des Blutes. Es puffert den pH – Wert des Blutes in den engen Grenzen von 7,35 bis 7,45.

Puffersysteme im Blut: Im Blutpuffer wirken vier Puffersysteme zusammen. Bei Säugetieren sind das nach absteigendem Anteil an der gesamten Pufferkapazität: 1. Kohlensäure – Hydrogencarbonat – Puffer (> 1/2) 2. Hämoglobin – Puffer (etwa 1/3) 3. Proteinat – Puffer (etwa 1/10) 4. Phosphat – Puffer (einige Prozent)

Kohlensäure – Hydrogencarbonat – Puffer Das Puffersystem wird durch zwei chemische Gleich­gewichte gekennzeichnet.

Katalysator: Das Enzym Carboanhydrase (51) führt zur Gleichge­wichtseinstellung. Ampholyt, wirksames Teilchen Hydrogencarbonat – Ion HCO3-

Pufferwirkung: gegen Basen: OH- + HCO3- → H2O + CO32- gegen Säuren: H3O+ + HCO3- → 2H2O + CO2

Protonenübergang: In der ersten Reaktion gibt das wirksame Teilchen HCO3- ein Proton ab. Es reagiert wie eine Brönsted – Säure. Im zweiten Fall nimmt das wirksame Teilchen HCO3- ein Proton auf. Es reagiert wie eine Brönsted – Base.

Bestimmung des pH - Wertes Es ist bekannt: Kohlensäure: pKs = 6,1 bei 37 °C Verhältnis c(HCO3-)/c(CO2): 20 : 1

Eingesetzt in die Henderson – Hasselbalch – Glei­chung (Puffergleichung): pH = pKs + lg[c(Base)/c(Säure)] = 6,1 + lg(20/1) pH = 7, 4 Der berechnete pH – Wert liegt sehr schön im ge­wünschten Intervall von 7,35 – 7,45.

Hämoglobin – Puffer Das Puffersystem wird durch ein Gleichgewicht ge­kennzeichnet. Wirksame Teilchen: HbH+, Hb

Pufferwirkung: gegen Basen: OH- + HbH+ → H2O + Hb gegen Säuren: H3O+ + Hb → H2O + HbH+

Protonenübergang: In der ersten Reaktion gibt das wirksame Teilchen HbH+ ein Proton ab. Es reagiert wie eine Brönsted – Säure. Im zweiten Fall nimmt das wirksame Teilchen Hb ein Proton auf. Es reagiert wie eine Brönsted – Base.

Zusammenspiel mit dem Kohlensäure – Hydrogen­carbonat – Puffer Die Protonen – Aufnahme durch Hb hat Auswirkung Auswirkung auf das Hauptpuffer – System: CO2 + 2H2O ⇌ H3O+ + HCO3- Es werden H3O+ - Ionen nachgebildet. Dadurch kann wieder Kohlenstoffdioxid aufgenommen werden.

Proteinat – Puffer Ampholyt, wirksames Teilchen ein Plasmaprotein (meist Albumin) Pufferwirkung: gegen Basen: OH- + Alb → H2O + Alb- gegen Säuren: H3O+ + Alb → 2H2O + AlbH+

Protonenübergang: In der ersten Reaktion gibt das wirksame Teilchen Alb ein Proton ab. Es reagiert wie eine Brönsted – Säure. Im zweiten Fall nimmt das wirksame Teilchen Alb ein Proton auf. Es reagiert wie eine Brönsted – Base.

Phosphat – Puffer Der Puffer ist gekennzeichnet durch das chemische Gleichgewicht: Ampholyt, wirksames Teilchen Dihydrogenphosphat – Ion H2PO4- Pufferwirkung: gegen Basen: OH- + H2PO4- → H2O + HPO42- gegen Säuren: H3O+ + H2PO4- → 2H2O + H2PO4

Protonenübergang: In der ersten Reaktion gibt das wirksame Teilchen H2­PO4- ein Proton ab. Es reagiert wie eine Brönsted – Säure. Im zweiten Fall nimmt das wirksame Teilchen H2PO4- ein Proton auf. Es reagiert wie eine Brönsted – Base.

Zusammenfassung: Das Blut benötigt für seine Funktionen einen pH – Wert zwischen 7,35 und 7,45. Die Pufferung bewirken vier Puffersysteme: Kohlensäure – Hydrogencarbonat, Hämoglobin, Proteinat und Phosphat.

Das war es schon wieder für heute. Ich wünsche euch alles Gute und viel Erfolg. Tschüs

Puffersysteme im Blut Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Puffersysteme im Blut kannst du es wiederholen und üben.

  • Formuliere Aussagen über die Regelung des pH-Wertes einer Lösung.

    Tipps

    Nur in Science-Fiction-Stories können Stoffe unbegrenzt reagieren.

    Es gibt Stoffe, die sowohl als Säure als auch Base reagieren können.

    Lösung

    Der pH-Wert eines stark sauren oder stark basischen Mediums wird stabilisiert. Falsch. Für solche pH-Bereiche sind Puffer nicht geeignet..

    Puffer werden vorzugsweise im pH-Bereich von 5 bis 9 eingesetzt. Richtig. Ausnahme gibt es natürlich auch.

    Die pH-Regelung erfolgt für beliebige Mengen zugegebener starker Säuren oder Basen. Falsch, denn jeder Puffer hat seine Kapazität.

    Ein Puffer reagiert mit Säuren wie Basen. Richtig, denn dafür ist der Puffer doch da.

    Der pH-Wert eines Puffers bleibt stets exakt gleich. Falsch. Die Stabilisierung erfolgt nur innerhalb eines gewissen Bereiches.

    Manche Puffer enthalten nur ein wirksames Teilchen. Richtig. Solche Teilchen nennt man Ampholyte.

  • Gib die Reaktionsgleichungen für die Blutpuffer an.

    Tipps

    Kohlenstoffdioxid ergibt zusammen mit Wasser eine Säure.

    Kohlensäure dissoziiert wenig. Dadurch wird die Pufferwirkung erreicht.

    Hämoglobin ist protonierbar.

    Durch Protonenübergang stehen zwei Säurerest-Ionen der Phosphorsäure zweier benachbarter Dissoziationsstufen im Gleichgewicht.

    Lösung

    1. Kohlensäure-Hydrogencarbonat-Puffer

    $CO_2$ + 2 $H_2O$ $\rightleftharpoons$ $H_2CO_3$ + $H_2O$

    Kohlenstoffdioxid reagiert mit Wasser zur unbeständigen Kohlensäure.

    $\rightleftharpoons$ $H_3O^\oplus$ + ${HCO_3}^\ominus$

    Im wässrigen Milieu dissoziiert Kohlensäure unter Bildung von Oxonium-Ionen und Hydrogencarbonat-Ionen.

    2. Hämoglobin-Puffer

    $Hb\!\cdot\!H^\oplus$ + $H_2O$ $\rightleftharpoons$ $Hb$ + $H_3O^\oplus$

    Protoniertes Hämoglobin reagiert mit Wasser zu freiem Hämoglobin und Oxonium-Ionen.

    3. Phosphat-Puffer

    ${H_2PO_4}^\ominus$ + $H_2O$ $\rightleftharpoons$ $H_3O^\oplus$ + ${HPO_4}^{2\ominus}$

    Ein Dihydrogenphosphat-Ion reagiert mit einem Wassermolekül zu einem Oxonium-Ion und einem Hydrogenphosphat-Ion.

  • Erläutere die Pufferwirkung des Kohlensäure-Hydrogencarbonat-Puffers.

    Tipps

    Das Säurerest - Ion einer schwachen Säure reagiert mit Oxonium - Ionen zu eben dieser Säure.

    Die Moleküle einer schwachen Säure sind bei Bedarf Protonen - Lieferanten.

    Säuren werden durch niedrige pH - Werte angezeigt, Basen durch hohe pH - Werte.

    Lösung

    1. Das System

    Der Puffer besteht aus einer schwachen Säure und einem leicht löslichen Salz dieser Säure.

    2. Die Dissoziationen

    Kohlensäure:

    $H_2CO_3$ + $H_2O$ $\rightleftharpoons$ $H_3O^\oplus$ + ${HCO_3}^\ominus$

    Die Säure dissoziiert kaum. Das Dissoziationsgleichgewicht ist praktisch vollständig nach links verschoben.

    Natriumhydrogencarbonat:

    $NaHCO_3$ $\rightleftharpoons$ $Na^\oplus$ + ${HCO_3}^\ominus$

    Das Dissoziationsgleichgewicht ist praktisch vollständig nach rechts verschoben.

    3. Stabilität gegenüber Säuren

    $H_3O^\oplus$ + ${HCO_3}^\ominus$ $\longrightarrow$ $H_2CO_3$ + $H_2O$

    Der pH-Wert wird durch die Säure nicht vermindert.

    4. Stabilität gegenüber Basen

    $H_2CO_3$ + $OH^\ominus$ $\longrightarrow$ $H_2O$ + ${HCO_3}^\ominus$

    Der pH-Wert wird durch die Base nicht erhöht.

    Anmerkung: Die im Video beschriebene Reaktion zwischen dem Hydrogencarbonat-Ion und dem Hydroxid-Ion ist wegen der gleichen Ladung der beteiligten Teilchen weniger effektiv.

  • Ermittle eine Bedingung für die Einstellung eines bestimmten pH-Wertes.

    Tipps

    Die benutzte Gleichung nennt man auch Puffergleichung.

    Kohlenstoffdioxid fungiert als Säure.

    Das Hydrogencarbonat-Ion ist eine Brönsted-Base.

    Lösung

    1. Die Gleichung

    Man benutzt die Henderson-Hasselbalch-Gleichung:

    $pH$ = $pK_s$ + lg[$c(Base)$/$c(Säure)$].

    2. Umstellung nach der gesuchten Größe

    $pH$ = $pK_s$ + lg[$c({HCO_3}^\ominus)$/$c(CO_2)$]

    Das gesuchte Verhältnis ist $q$:

    $pH$ = $pK_s$ + lg[$q$].

    Daraus erhalten wir den dekadischen Logarithmus der gesuchten Größe:

    lg[$q$] = $pH$ - $pK_s$.

    3. Rechnung

    lg[$q$] = 7 - 6,1

    q = 10^{0,9}

    Gerundet auf Ganze erhält man:

    $c(Base)$}/{$c(Säure)$ = 8.

  • Bestimme die Anteile der Puffer an der pH-Regulierung des Blutes.

    Tipps

    Der häufigste Anteil wird durch die beste Zugänglichkeit der Komponenten bestimmt.

    Phosphorsäure ist in gewissen Mengen ungiftig. Große Mengen sind mit Sicherheit zu vermeiden.

    Lösung

    • Kohlensäure-Hydrogencarbonat-Puffer - mehr als die Hälfte
    • Hämoglobin-Puffer - etwa ein Drittel
    • Proteinat-Puffer - etwa ein Zehntel
    • Phosphat-Puffer - weniger als ein Fünfzehntel
    Der Kohlensäure-Hydrogencarbonat-Puffer ist am einfachsten zu realisieren und stabilisiert im neutralnahen Bereich.

    Der Hämoglobin-Puffer bietet sich durch den Zugang zum Hämoglobin im Blut an.

    Proteine bieten sich durch gute Zugänglichkeit und amphotere Eigenschaften für die Pufferung an.

    Der Phosphatpuffer wirkt im Bereich zwischen pH = 6 bis pH = 8.

  • Erkläre die Pufferwirkung einer Aminosäure.

    Tipps

    Aminosäuren sind Ampholyte.

    Die Teilchen von Aminosäuren können sowohl mit Oxonium-Ionen als auch mit Hydroxid-Ionen reagieren.

    Lösung

    1. Die Modellverbindung

    Das abgebildete Molekül ist die Formel für Glycin. Im neutralen pH-Bereich liegt das Teilchen als Zwitter-Ion vor:

    $H_3N^\oplus-CH_2-COO^\ominus$.

    2. Neutrales Medium

    Bei pH-Werten um 7 reichen die Konzentrationen der Oxonium-Ionen und Hydroxid-Ionen nicht aus, um mit dem Aminosäureteilchen zu reagieren. Der größte Teil davon bleibt erhalten.

    3. Zugabe von Säure

    Bei Zufuhr von Oxonium-Ionen findet eine Reaktion mit den Aminosäureteilchen statt:

    $H_3O^\oplus$ + $H_3N^\oplus-CH_2-COO^\ominus$ $\longrightarrow$ $H_3N^\oplus-CH_2-COOH$ + $H_2O$.

    Es kommt praktisch zu keiner Änderung des pH-Wertes in Richtung kleinerer Werte.

    4. Zugabe von Base

    Bei Zugabe von Hydroxid-Ionen findet eine Reaktion mit den Aminosäureteilchen statt:

    $OH^\ominus$ + $H_3N^\oplus-CH_2-COO^\ominus$ $\longrightarrow$ $H_2N-CH_2-COO^\ominus$ + $H_2O$.

    Es kommt zu kaum einer Änderung des pH-Wertes in Richtung größerer Werte.