30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Lösungsenthalpie 05:18 min

Textversion des Videos

Transkript Lösungsenthalpie

Guten Tag und herzlich willkommen. Dieses Video heißt Lösungsenthalpie. Das Video gehört zur Reihe Salzlösungen. Zur Erlangung der nötigen Vorkenntnisse solltet ihr bereits die Videos Dissoziation und Hydratation von Ionen gesehen haben. Mein Ziel ist es, euch in diesem Video den Begriff der Lösungsenthalpie und seine Anwendungen kurz darzustellen. Das Video ist in 3 Abschnitte unterteilt:

  1. Was ist die Lösungsenthalpie?
  2. 2 Beispiele
  3. Der entropische Effekt

  4. Was ist die Lösungsenthalpie? Wir gehen aus von einem Ionengitter. Auf das Ionengitter wirkt Wasser. Es kommt zur Dissoziation. Im 1. Schritt werden die Ionen weit voneinander getrennt. Man benötigt dafür 1. eine Gitterenergie, abgekürzt ΔHGitter. Im nächsten Schritt wirken die Dipole des Wassers auf die Ionen. Es kommt zur Ion-Dipol-Wechselwirkung. Diesen Vorgang bezeichnet man als Hydratisierung. Die dabei frei werdende Energie ist die Hydratationsenthalpie, die die 2. Komponente unserer Überlegung darstellt. Sie wird durch das Symbol ΔHhyd dargestellt. Die Lösungsenthalpie setzt sich aus Gitterenergie und Hydratationsenthalpie zusammen. Lösungsenthalpie = Gitterenergie + Hydratationsenthalpie. ΔHL = ΔHGitter + ΔHhyd.

  5. Beispiele

Im Beispiel 1 betrachten wir die Dissoziation von Kaliumchlorid. KCl dissoziiert in wässriger Lösung in hydratisierte Kaliumionen und in hydratisierte Chloridionen. Das System erfährt beim Auflösen des Salzes im Wasser eine leichte Abkühlung. ΔHGitter beträgt für Kaliumchlorid 701 kJ/mol. Das ist die Gitterenergie. ΔHyd beträgt für die Bildung von hydratisierten Kaliumionen -308 kJ/mol. Bei der Hydratisierung eines Mols an Chloridionen werden 376 kJ/mol an Energie frei. Es handelt sich hier um die beiden Hydratationsenergien des Kations und des Anions. Wir bilanzieren. Das geschieht, indem wir die einzelnen Energiewerte addieren. Wir erhalten für ΔHL +17 kJ/mol. Eine positive Lösungsenthalpie ist in Übereinstimmung mit einer leichten Abkühlung während des Lösungsvorgangs. Für das Auflösen des Salzes wird Energie vom Wasser aufgenommen. D. h. das System kühlt sich ab.

Im Beispiel 2 betrachten wir die Dissoziation von Kalziumchlorid. Kalziumchlorid dissoziiert in wässriger Lösung unter der Bildung von hydratisierten Kalziumionen und hydratisierten Chloridionen. Beim Lösungsprozess kommt es zu einer kräftigen Erwärmung. ΔHGitter für Kalziumchlorid beträgt 2146 kJ/mol. Es handelt sich hier um die Gitterenergie. ΔHhyd für die Hydratisierung von Kalziumionen beträgt -1577 kJ/mol. Der entsprechende Wert für die Bildung eines hydratisierten Chloridions aus einem reinen Chloridion muss verdoppelt werden, denn wir haben es ja mit 2 Teilchen zu tun. Wir erhalten -752 kJ/mol. Aus beiden Werten können wir die Hydratationsenthalpie für die Ionen berechnen. Nun können wir bilanzieren. D. h. Gitterenergie und Hydratationsenthalpie einfach addieren. Wir erhalten einen Wert von -183 kJ/mol. Das bedeutet, dass die Energie zum Wasser übergeht und das erklärt auch die kräftige Erwärmung.

  1. Der entropische Effekt Ich möchte darauf verweisen, dass streng genommen bei allen Überlegungen die Entropie berücksichtigt werden müsste. Sie ist jedoch meistens klein und man vernachlässigt sie. Folgendes gibt es aber zu bedenken: Wir erinnern uns: Wohlgeordnete Ionen geben ihre geordnete Lage auf und werden zu einzelnen freibeweglichen Ionen. Der Übergang vom Ionengitter zu den Ionen ist mit einem Entropiezuwachs verbunden. Die Einwirkung der Wasserdipole auf die Ionen und die damit verbundene Hydratisierung führt zu einer Entropieverminderung.

Mit diesen letzten Überlegungen zum Auf- und Abbau der Materie möchte ich mich verabschieden. Alles Gute. Auf Wiedersehen.

4 Kommentare
  1. "Toll erklärt. Danke.
    Kleiner Zusatz: Interessant wäre beim entropischen Effekt vielleicht noch die Tatsache gewesen, dass die Entropiezunahme der Grund dafür ist, dass endogene Lösungsvorgänge überhaupt (unter Abkühlung) stattfinden. (exergone Reaktion) Soweit ich das richitg verstanden habe, ist dem so?"
    Von Olivia Serwata, vor mehr als 3 Jahren

    André Otto schreibt am 25. Oktober 2015:
    Ich hatte die Bemerkung damals nicht gesehen.
    Beim Auflösen eines Salzes kommt es generell zur Entropiezunahme. Mit Erwärmen oder Abkühlen hat das nichts zu tun. Ob es wärmer oder kälter wird hängt lediglich davon ab, ob die Energie (Enthalpie), die bei der Hydratation (Solvatisierung) frei wird, vom Betrag größer oder kleiner als die Gitterenergie (Gitterenthalpie) ist. Im zweiten Fall spielt die Entropie eine wichtige Rolle. Ist ihre Zunahme zu gering, findet das Auflösen nur teilweise oder nicht statt.
    Alles Gute

    Von André Otto, vor mehr als 4 Jahren
  2. Gibt es doch, hat Götz Vollweiler vor 5 Jahren gedreht.

    Alles Gute

    Von André Otto, vor mehr als 4 Jahren
  3. Ich brauche bitte ein Video über enthalpie

    Von Ragai00fox, vor mehr als 4 Jahren
  4. Toll erklärt. Danke.
    Kleiner Zusatz: Interessant wäre beim entropischen Effekt vielleicht noch die Tatsache gewesen, dass die Entropiezunahme der Grund dafür ist, dass endogene Lösungsvorgänge überhaupt (unter Abkühlung) stattfinden. (exergone Reaktion) Soweit ich das richitg verstanden habe, ist dem so?

    Von Olivia Serwata, vor mehr als 7 Jahren

Lösungsenthalpie Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Lösungsenthalpie kannst du es wiederholen und üben.

  • Beschreibe das Auflösen eines Salzes durch Wasser.

    Tipps

    Für den Lösungsprozess eines Salzes ist der Zerfall des Ionengitters in isolierte Ionen notwendig.

    Die Ionenbildung aus dem Ionengitter verlangt Energie.

    Die Bildung von Ionen bezeichnet man als Dissoziation.

    Die Dipole des Wassers bilden mit den Ionen größere Teilchen.

    Das Umschließen der Ionen mit Wasser-Molekülen nennt man Hydratation.

    Lösung

    Im Ionengitter werden die Ionen verschiedener Ladung fest zusammengehalten. Bei Zufuhr einer Energie, der Gitterenergie, kommt es zur Dissoziation des Gitters. Das Gitter zerfällt in Ionen. Diesen Prozess bezeichnet man als Dissoziation. Die Ionen sind geladene Teilchen. Zusammen mit den Dipolen, die die Wasser-Moleküle darstellen, entstehen größere, komplexe Teilchen. Der Vorgang wird als Hydratation bezeichnet. Dabei wird die sogenannte Hydratationsenthalpie freigesetzt. Bei diesem Prozess wird häufig die Gitterenergie durch die Hydratationsenthalpie vollständig ersetzt.

  • Erkläre an zwei Beispielen die Bilanzierung der Lösungsenthalpie.

    Tipps

    Gitterenergien sind stets positiv, Hydratationsenthalpien sind immer negativ.

    Die vom Betrag her große Gitterenergie und die große Hydratationsenthalpie gehören zum zweifach geladenen Calcium-Ion.

    Bedenke bei der Rechnung, dass ein Molekül Calciumchlorid zwei Chlor-Teilchen enthält.

    Lösung

    Natürlich kann man nicht alle Werte im Kopf haben. Aber: Wenn man bedenkt, dass Gittenergien recht große positive Werte sind, hat man schon den ersten Anhaltspunkt. Offensichtlich ist die Gitterenergie für ein Salz mit mehrfach geladenen Ionen erheblich höher als für ein Salz, bei dem die Ionen nur einfach geladen sind.
    Damit sollte die Gitterenergie für Kaliumchlorid den Wert +701 kJ/mol haben. Dass Kaliumchlorid bei Dissoziation Kalium-Ionen und Chlorid-Ionen bildet, weißt du aus dem Anfängerunterricht. Der Betrag der Hydratationsenthalpien für einfach geladene Ionen liegt in der Größenordnung von einigen Hundert Kilojoule pro mol. Die Werte von -308 kJ/mol für das Kalium-Ion und -376 kJ/mol für das Chlorid-Ion haben wir nicht erklärt. Falls ihr sie nicht richtig zuordnen könnt, müsstet ihr zur Videohilfe greifen. Ist man erst einmal hier angekommen, so kann man für Kaliumchlorid die Hydratationsenthalpie (-684 kJ/mol) und auch die Lösungsenthalpie (+17 kj/mol) als Summe von Gitterenergie und Hydratationsenergie leicht berechnen.
    Für Calciumchlorid bleibt folgerichtig als Gitterenergie der hohe Wert von +2146 kJ/mol. Das Salz dissoziiert in Calcium-Ionen und in Chlorid-Ionen. Als Hydratationsenthalpie für die Calcium-Ionen bleibt der betragsmäßig hohe Wert von -1577 kJ/mol übrig, denn den Wert für die Chlorid-Ionen haben wir ja bereits bei der Betrachtung von Kaliumchlorid gewählt. Die gesamte Hydratationsenthalpie ergibt sich als Summe der Teilbeiträge (ein Calcium-Ion und zwei (!) Chlorid-Ionen). Man erhält -2329 kJ/mol. Die Addition der Gitterenergie liefert eine Lösungsenthalpie für Calciumchlorid von -183 kJ/mol.

  • Entscheide, welche Faktoren beim Lösen eines Salzes zu einer Temperaturänderung führen.

    Tipps

    Die Gitterenergie ist stets positiv, die Hydratationsenthalpie immer negativ.

    Die Lösungsenthalpie ist die Summe aus Gitterenergie und Hydratationsenthalpie.

    Die Lösungsenthalpie ist die Energie, die zur Lösung des Salzes gebraucht wird.

    Lösung

    Die Lösungsenthalpie ist die Summe von Gitterenergie und Hydratationsenthalpie. Ist die Lösungsenthalpie > 0 / < 0 / = 0, so kommt es zu Abkühlung / Erwärmung / keiner Temperaturänderung. Die drei Fälle in der angegebenen Reihenfolge treten ein, wenn gilt: Betrag der Gitterenergie > Betrag der Hydratationsenthalpie / Betrag der Gitterenergie < Betrag der Hydratationsenthalpie / Betrag der Gitterenergie = Betrag der Hydratationsenthalpie. Kennt man die beiden Werte nicht, kann man auch keine Aussage über eine Temperaturänderung des Systems machen.

  • Beurteile den Einfluss der Entropie auf den Lösungsprozess.

    Tipps

    |ΔS(Diss)| = |ΔS(Hydr)| bedeutet ΔS = 0.

    |ΔS(Diss)| >> |ΔS(Hydr)| heißt, dass der den Lösungsprozess begünstigende Faktor überwiegt.

    |ΔS(Diss)| << |ΔS(Hydr)| heißt, dass der den Lösungsprozess hemmende Faktor überwiegt.

    Ein geringer Unterschied zwischen |ΔS(Diss)| und |ΔS(Hydr)| kann für die Betrachtung des Lösungsprozesses vernachlässigt werden.

    Bei keiner Dissoziation des Ionengitters kann es negative Werte ΔS(Diss) geben.

    Lösung

    |ΔS(Diss)| = |ΔS(Hydr)| oder die ungefähre Gleichheit haben keinen Einfluss bzw. einen vernachlässigbaren Einfluss auf den Lösungsprozess. |ΔS(Diss)| >> |ΔS(Hydr)| führt zur Begünstigung des Lösungsprozesses, da der begünstigende Faktor überwiegt. |ΔS(Diss)| << |ΔS(Hydr)| führt zur Behinderung des Lösungsprozesses, da der behindernde Faktor überwiegt. Die Dissoziation des Ionengitters führt zur Unordnung der Teilchen. Die entsprechende Entropie steigt. ΔS(Diss) ist immer positiv, der Fall ΔS(Diss) < 0 tritt nie ein.

  • Benenne die Vorzeichen der Beiträge zur Lösungsenthalpie.

    Tipps

    Um das Gitter in isolierte Ionen zu überführen, benötigt man eine positive Gitterenergie.

    Bei der Hydration der Ionen durch Wasser wird die Hydratationsenthalpie frei.

    Die Gitterenergie und die Hydratationsenthalpie haben verschiedene Vorzeichen.

    Lösung

    Die Umwandlung des Ionengitters in Ionen erfordert Energie. Diese Energie heißt Gitterenergie. Da das System diese Energie aufnimmt, ist die Gitterenergie größer als 0. Die Hydratation der Ionen durch das Wasser setzt Energie frei. Diese Energie nennt man Hydratationsenthalpie. Da diese Energie vom System freigesetzt wird, ist sie kleiner als 0.

  • Bestimme die Gitterenergien ionischer Verbindungen.

    Tipps

    Erste Auswahl: Lithiumfluorid, Natriumfluorid, Natriumchlorid (Betrag der Gesamtladung = 2, daher geringste Werte).

    Zweite Auswahl: Magnesiumfluorid, Magnesiumchlorid (Betrag der Gesamtladung = 3, daher mittlere Werte)

    Dritte Auswahl: Magnesiumoxid (Betrag der Gesamtladung = 4, daher höherer Wert)

    Vierte Auswahl: Aluminiumchlorid (Betrag der Gesamtladung = 6, daher hoher Wert)

    Fluorid-Ionen sind kleiner als Chlorid-Ionen. Lithium-Ionen sind kleiner als Natrium-Ionen (siehe PSE).

    Lösung

    NaF, NaCl und LiF besitzen die geringsten Gitternenergien, da der Betrag der Gesamtladung der Ionen nur 2 ist. Die größßten Ionen davon besitzt NaCl, dann kommt NaF (Fluorid ist kleiner gegenüber Chlorid) und LiF schließlich besteht aus den kleinsten Ionen. Also: NaCl < NaF < LiF Dann folgen: Magnesiumchlorid < Magnesiumfluorid (Betrag der Gesamtladung = 3 und Chlorid größer als Fluorid). Nun haben wir nur noch nach der Größe der Beträge der Gesamtladung zu entscheiden. Man erhält schließlich: Natriumchlorid < Natriumfluorid < Lithiumfluorid < Magnesiumchlorid < Magnesiumfluorid < Magnesiumoxid < Aluminiumchlorid < Aluminiumoxid