30 Tage testen: Mehr Spaß am Lernen.
30 Tage risikofrei testen

Überzeugen Sie sich von der Qualität unserer Inhalte.

30 Tage risikofrei testen

Ligandenfeldtheorie – Magnetismus von Komplexen 08:20 min

Textversion des Videos

Transkript Ligandenfeldtheorie – Magnetismus von Komplexen

Hallo, willkommen zu Chemie

In diesem Video soll es um die magnetischen Eigenschaften von Komplexen gehen. Warum sind denn eigentlich einige Komplexe magnetisch und andere nicht? Um dir dies zu erklären, habe ich das Video wie folgt gegliedert. Als erstes zeige ich dir welche Aussagen die Ligandenfeldtheorie dazu macht. Danach werde ich dir erklären was die Hundsche Regel ist. Wir kommen dann zu den High-Spin und Low-Spin Komplexen und schließlich zu den, aus allen Punkten vorher, resultierenden magnetischen Eigenschaften. Am Ende folgt wie gewohnt die knappe Zusammenfassung des Gelernten.

Um zu verstehen wie die verschiedenen Arten von Magnetismus in Komplexen entstehen, bedienen wir uns der Ligandenfeldtheorie. Sehen wir uns einmal den Komplex Hexafluorido-Ferrat(III) an. Hier ist das Eisen(III)-Ion das Zentralteilchen. Es besitzt 5 Außen-e-, die sich in den d-Orbitalen befinden. Hier siehst du die 5 im Raum orientierten d-Orbitale. Die Liganden sind 6 Fluorid-Ionen. Sie sind in Form eines Oktaeders um das Eisen(III)-Ion angeordnet.
Liganden haben aufgrund ihrer e- ein elektrisches Feld. Dieses wirkt auf die Orbitale. Diejenigen, die direkt in Richtung der Liganden liegen, also das z2- und das x2-y2-Orbital, werden stärker beeinflusst. Die Beeinflussung durch das elektrische Feld der Liganden hat zur Folge, dass die d-Orbitale energetisch angehoben werden. In einem Energie-Diagramm kann man es so darstellen. Dies ist der Grundzustand der Orbitale. Sie werden dann angehoben. Die beiden Orbitale in Richtung der Liganden werden aber stärker angehoben. Daher kommt es zu einer Aufspaltung. Diese Energiedifferenz nennt man Ligandenfeldaufspaltungsenergie, kurz Delta. Soweit so gut. Was bedeutet das jetzt für den Komplex.

Die magnetischen Eigenschaften eines Komplexes werden hervorgerufen durch die e--Besetzung der aufgespalteten Orbitale. Wie wir diese Besetzung durchführen, verrät uns die Hundsche Regel. Sie besagt: Alle Orbitale gleichen Energieniveaus werden zuerst mit jeweils einem e- mit parallem Spin besetzt. Das heißt: Die 5 d-Orbitale werden nicht so, sondern so besetzt. Paralleler Spin bedeutet also alle zuerst eingesetzten e- haben den gleichen Spin. Erst wenn dies geschehen ist wird das Orbital mit einem weiteren e- mit antiparallelem Spin besetzt. Der Grund dafür ist die, aus der Abstoßung der beiden e- resultierende, Spinpaarungsenergie. Aus dieser Regel gehen nun unterschiedliche e--Besetzungen der aufgespaltenen Orbitale in Komplexen mit verschiedenen Liganden hervor. Man unterscheidet in schwache und starke Liganden. Bei den schwachen ist die Aufspaltung der Orbitale klein. Dadurch ist die Ligandenfeldaufspaltungsenergie(Delta) kleiner als die Spinpaarungsenergie. Ein Orbital mit 2 e- zu besetzen erfordert also mehr Energie als die Orbitale energetisch auseinander liegen. Dies hat zur Folge, dass alle 5 d-Orbitale einzeln besetzt werden. Ein Beispiel für einen Komplex mit schwachen Liganden ist Hexafluorido-Ferrat(III). Bei starken Liganden kommt es zu einer großen Aufspaltung der Orbitale. Dadurch ist Delta größer als die Spinpaarungsenergie. Somit ist der enrgieärmere Zustand, dass alle 5 e- in den abgesenkten Orbitalen sind. Ein Beispiel hierfür ist der Hexacyanido-Ferrat(III)-Komplex. Wir können nun den Gesamtspin der Komplexe berechnen. Als erstes für die schwachen Liganden. Alle 5 e- haben einen parallel Spin. Daher rechnen wir 5 mal +½ ergibt +2 ½. Dies ist ein hoher Gesamtspin. Daher wird dieser Komplex als High-Spin Komplex bezeichnet. Für die starken Liganden rechnen wir 3 mal +1/2 , für die 3 e- mit parallelem Spin, + 2 mal -½, für die 2 e- mit antiparallelem Spin. Es ergibt sich +½. Daher ist dieser Komplex ein Low-Spin Komplex.

Diese High- und Low-Spin Komplexe haben unterschiedliche magnetische Eigenschaften. Wir können uns e- wie kleine Stabmagnete vorstellen. Dabei heben sich die Magnetfelder von e- mit entgegengesetztem Spin vollständig auf. Das heißt e--Paare haben nach außen kein Magnetfeld. Es kommt also nur auf die Anzahl der ungepaarten e- an. Ohne ungepaarte e- ist ein Komplex diamagnetisch. Das heißt er wandert aus einem äußeren Magnetfeld heraus. Mit ungepaarten e- ist ein Komplex paramagnetisch. Das bedeutet er wandert in ein äußeres Magnetfeld hinein. Außerdem gilt je mehr ungepaarte e- vorliegen, desto größer ist das magnetische Moment.

Du hast nun Schritt für Schritt gelernt wie die unterschiedlichen magnetischen Eigenschaften von Komplexen zustande kommen. Ich werde es jetzt noch einmal kurz zusammenfassen. Liganden wechselwirken mit den Außen-e- des Zentralteilchens. Bei Nebengruppenelementen kommt es zu einer Aufspaltung der d-Orbitale. Die Hundsche Regel besagt, dass energetisch gleiche Orbitale erst einfach besetzt werden. Es gilt: je mehr ungepaarte e- in einem Komplex vorliegen, desto größer ist das magnetische Moment. Mit ungepaarten e- ist der Komplex paramagnetisch, ohne ist er diamagnetisch. Ich hoffe du hast heute viel neues über Komplexe gelernt. Weiterhin noch viel Erfolg beim Lernen. Bis zum nächsten mal. Dein Mathias