50 % Halbjahreszeugnis-Aktion —
nur bis 24.02.2019

30 Tage kostenlos testen und anschließend clever sparen.

Reaktionen mit Metallkomplexen 12:48 min

Textversion des Videos

Transkript Reaktionen mit Metallkomplexen

Guten Tag und herzlich willkommen. Dieses Video heißt "Reaktionen mit Metallkomplexen", das Video gehört zur Reihe "Metallkomplexe". Für die notwendigen Vorkenntnisse solltest du unbedingt die Videos "Koordinative Bindung", "Aufbau von Metallkomplexen" und "Chelatkomplexe" gesehen haben. Ziel des Videos ist es, dir eine erste Vorstellung über die Reaktionen von Metallkomplexen zu vermitteln. Das Video habe ich in sechs Abschnitte unterteilt. Erstens: Aquakomplexe, Zweitens: Ligandenaustauschreaktionen, Drittens: Liganden bestimmen die Farbe, Viertens: Thermodynamische und kinetische Stabilität, Fünftens: Stabilität und Chelateffekt und Sechstens: eine Zusammenfassung. Erstens: Aquakomplexe. Wie alle Metallkomplexe bestehen auch die Aquakomplexe aus einem Zentral-Ion. Dieses Zentral-Ion wird von den Liganden umhüllt, es sind hier sechs Wassermoleküle. Im Ergebnis entsteht der Metallkomplex. Schauen wir uns nun einige Beispiele in Formelschreibweise an. Ein Cobalt(II)-Ion bildet mit sechs Wassermolekülen den entsprechenden Metallkomplex, aus Kupfer(II)-Ionen und sechs Wassermolekülen entsteht ebenfalls ein Metallkomplex und schließlich entsteht aus einem Eisen(III)-Ion und 6 Wassermolekülen der entsprechende Aquakomplex. Die entsprechenden Zentral-Ionen besitzen jeweils die Koordinationszahl 6, was man ihnen allein allerdings nicht ansieht. Erst wenn sich der entsprechende Komplex gebildet hat, sieht man, um welche Koordinationszahl es sich handelt. Zweitens: Ligantenaustauschreaktionen. Betrachten wir einen Aquakomplex in gewohnter Formelschreibweise. Seine Ladung soll n+ sein und er soll x Wassermoleküle koordinativ am Zentralatom angeordnet haben. So ein Komplex kann man x Liganden in Reaktion treten, dabei erthält das Zentral-Ion eben diese neuen x Liganden. Die ursprünglichen Liganden, die Wassermoleküle, werden bei dieser Reaktion frei. Eine solche chemische Reaktion bezeichnet man suggestiv als Ligandenaustausch. Beim Ligandenaustausch handelt es sich um eine typische Metallkomplex-Reaktion, die man bei anderen Verbindungsklassen nicht kennt. Nehmen wir ein weiteres Beispiel, den Kupferaquakomplex. Das Kupfer(II)-Ion hat in diesem Komplex die Koordinationszahl 4. Bei der Reaktion mit vier Molekülen Ammoniak werden die Wassermoleküle des Komplex gegen die vier Ammoniakmoleküle ausgetauscht. Die Wassermoleküle werden frei. Nach Nomenklatur, die wir bereits kurz besprochen haben, heißt der neu entstandene Komplex Tetraamminkupfer(II)-Ion. Gewöhnlich wird auf eines der beiden "a" verzichtet und man sagt kurz Tetramminkupfer(II)-Ion. Oder nehmen wir den Aquakomplex des Eisen(III)-Ions. Das Eisen(III)-Ion hat die Koordinationszahl 6. Der Aquakomplex reagiert mit zwei Thiocyanat-Ionen, SCN-. Beim neu entstandenen Komplex bleiben vier Wassermoleküle als Liganden erhalten, anstelle zweier Wassermoleküle hat der neue Komplex zwei Thiocyanat-Ionen erhalten. Durch die negative Ladung der beiden neu hinzugekommenen Liganden verändert sich die Ladung des Komplexes auf einfach "+". Natürlich werden bei der Reaktion zwei Wassermoleküle freigesetzt. Jetzt mach ich mich bei euch unbeliebt, indem ich den chemischen Namen des neu entstandenen Komplexes nach Nomenklatur benenne. Schaut euch die Formel genau an: Tetraaquadithiocyanatoeisen(III)-Ion. Drittens: Liganden bestimmen die Farbe. Die Liganden der Metallkomplexe führen zu einem breiten Spektrum an Farbigkeit. Der Aquakomplex des Kupfer(II)-Ions ist blassblau, der entsprechende Tetramminkomplex ist von tiefblauer Farbe. Das Hexaaquaeisen(III)-Ion ist gelb, nach der Reaktion mit den Thiocyanat-Ionen erhält man einen roten Komplex. Ammoniak ist somit ein Reagenz auf Kupfer(II)-Ionen, mit Thiocyanat-Ionen weist man Eisen(III)-Ionen nach. Viertens: Themodynamische und kinetische Stabilität. Bei der Reaktion von Kupfer(II)-Ionen mit vier Molekülen Ammoniak entsteht das Tetramminkupfer(II)-Ion. Man kann die Gleichgewichtskonstante für diese Reaktion formulieren, denn obwohl stark nach rechts verschoben, handelt es sich hier um ein chemisches Gleichgewicht. Nach dem Massenwirkungsgesetz können wir somit formulieren: Konzentration des entstandenen Komplexes dividiert durch Konzentration der Kupfer(II)-Ionen mal Konzentration des Ammoniaks hoch vier. Die Gleichgewichtskonstante ist hier 2*1013 in vereinbarten Konzentrationseinheiten. Die Gleichgewichtskonstante Kf bezeichnet man als Bildungskonstante. Den reziproken Wert von Kf, "Kd", nennt man Zerfallskonstante. Wir wollen nun noch einmal die Reaktion notieren und den korrekten Namen des Ions aufschreiben: Tetramminkupfer(II)-Ion. Da die Bildungskonstante Kf bedeutend größer als 1 ist, so sagt man: Der entstandene Komplex ist thermodynamisch stabil. Und jetzt sind wir zu dem schönen Komplex einmal ganz böse und gemein, denn wir ändern die Reaktionsbedingung. Es reicht die Zugabe von Natriumsulfid, Na2S. Der schöne Komplex zerfällt, er wird themodynamisch instabil. Und was passiert, wenn ich Säure, das heißt Hydronium-Ionen zu dem Komplex hinzugebe? Ihr werdet es schon erraten haben: Der arme Komplex zerfällt, er wird thermodynamisch instabil. Warum ist das so? Ich liefere die Auflösung. Natriumsulfid, im Ergebnis bildet sich unlösliches Kupfersulfid, und Hydronium-Ionen, im Ergebnis entstehen Ammonium-Ionen, NH4+, zerstören den Metallkomplex. Das Gleichgewicht wird jeweils stark nach links verschoben. Der Metallkomplex wird zerstört, man sagt auch: Der Metallkomplex ist labil. Betrachten wir einmal folgende Ligandenaustauschreaktion: Das Hexamincobalt(III)-Ion reagiert mit sechs Hydronium-Ionen, es entsteht das Hexaaquacobalt(III)-Ion. Sechs Ammonium-Ionen werden frei. Der Hexaminkomplex links hat die schrecklich hohe Zerfallskonstante 1023. Es steht außer Frage, dass er thermodynamisch instabil ist. Trotzdem läuft die Reaktion im schwach sauren Medium nicht ab. Solches Verhalten ist uns schon früher begegnet. Man sagt: Der Komplex ist kinetisch stabil. Ein solches Verhalten wird in der Komplexchemie auch kurz als "inert" bezeichnet. Fünftens: Stabilität und Chelat-Effekt. Wir haben gelernt, dass Metallkomplexe zum Ligandenaustausch befähigt sind. Herkömmliche Metallkomplexe weisen gewöhnlich eine hohe thermodynamische und kinetische Stabilität auf. Vergleicht man allerdings die Stabilität eines herkömmlichen Metallkomplexes mit der eines Chelatkomplexes, so kann der Metallkomplex dem Chelatkomplex das Wasser in keinster Weise reichen. Dieser dramatische Unterschied in der Stabilität wird als "Chelat-Effekt" bezeichnet. Der Chelat-Effekt hat im Wesentlichen zwei Ursachen: Die Entropieabnahme bei der Komplexbildung ist beim Chelatkomplex geringer als bei der Bildung des herkömmlichen Komplexes. Die entsprechende Konsequenz kann man aus der Gibbs-Helmholtz-Gleichung ablesen. Es kommt zu einer Verringerung der Destabilisierung beim Chelatkomplex im Vergleich zu einem herkömmlichen Metallkomplex. Das ist der erste Grund für den Chelat-Effekt. Der zweite Grund ist ein einfach logischer: Der Chelatkomplex ist erst dann zerstört, wenn alle Bindungen gebrochen sind. Soweit zu den Ursachen des Chelat-Effektes. Sechstens: Zusammenfassung. Wichtige Metallkomplexe sind Aquakomplexe, Schwermetall-Ionen wie das Cobalt(II)-Ion oder das Eisen(III)-Ion bilden Aquakomplexe. Eine wichtige Reaktion der Metallkomplexe ist der Ligandenaustausch, so können zum Beispiel Aqualiganden durch Amminliganden ausgetauscht werden. Die Farbigkeit der Metallkomplexe ist sprichwörtlich, der Aquakomplex ist blassblau, der Amminkomplex tiefblau. Für die Kennzeichnung der thermodynamischen Stabilität eines Metallkomplexes werden die Bildungskonstante Kf und die Zerfallskonstante Kd verwendet. Es sind Gleichgewichtskonstanten, die an die Reaktion der Bildung des Komplexes aus dem Zentral-Ion und den Liganden geknüpft sind. Kf ist die Gleichgewichtskonstante, wenn ich davon ausgehe, dass das Reaktionsprodukt rechts ist. Kd ist die Gleichgewichtskonstante, wenn ich sage, dass die Reaktionsprodukte links liegen. Ist die Bildungskonstante Kf viel kleiner als 1, so sagt man: Der Metallkomplex ist thermodynamisch instabil. Ist der Metallkomplex kinetisch instabil, so bezeichnet man ihn als labil. Ist der Metallkomplex kinetisch stabil, so bezeichnet man ihn als inert. Bei einer kinetischen Betrachtung gehören also die Begriffe "stabil" / "instabil", "inert" und "labil" als Paare zusammen. Unter Chelat-Effekt versteht man die sehr große Stabilität eines Chelatkomplexes im Vergleich zu einem herkömmlichen Metallkomplex. Ich danke für die Aufmerksamkeit. Alles Gute. Auf Wiedersehen.

6 Kommentare
  1. Bianka

    Die Koordinationszahl gibt an, durch wie viele Donoratome des Liganden ein Metall koordiniert wird. Diese Zahl hängt nicht allein vom Metall ab. Natürlich beeinflusst auch das Metall durch seine Elektronenkonfiguration die Koordinationszahl, sie hängt aber auch schlicht vom Platz ab. Also bei sehr sperrigen Liganden koordinieren weniger. Es gibt also nicht die eine Koordinationszahl je Metallion. Ni²⁺ kann zum Beispiel eine Koordinationszahl von 4 haben oder von 6. Das ist ganz vom jeweiligen Komplex abhängig.

    Liebe Grüße aus der Redaktion!

    Von Bianca Blankschein, vor 4 Monaten
  2. Default

    Hallo, woher weiß man welche Koordinations Zahl ein Metall Ion hat?

    Von Marcela7558, vor 4 Monaten
  3. 001

    Hallo, das hängt von der Koordinationsfähigkeit des Liganden ab. NH3 gibt eine stärkere Bindung als H2O, da das nichtbindende Elektronenpaar im NH3 durch die geringere Elektronegativität stärkere Bindungen eingeht als das entsprechende Elektronenpaar im H2O. SCN- ist negativ geladen und liefert noch stärkere Bindungen.
    Ein zweiter Faktor ist natürlich die Konzentration. Die oben genannte Abfolge gilt natürlich nur bei vergleichbar hohen Konzentrationen der beteiligten Liganden.
    Alles Gute

    Von André Otto, vor etwa 3 Jahren
  4. Bewerbungsfoto

    Hallo! Woher weiß man im Vorfeld, ob es zum Ligandenaustausch kommt oder nicht?

    Von Alexandra B., vor etwa 3 Jahren
  5. 001

    Bei Ionen sagt man "Ladung":
    F-, Cl-, Br-, I- ist klar.
    CN-, OH- ist auch klar.
    H2O, NO, CO haben keine Ladung (Teilchen von Verbindungen).
    Metalle:
    Hauptgruppen: Ladung entspricht der Gruppennummer (Al 3+, Pb 4+)
    Nebengruppen: Ladung meist gleich der Gruppennummer (Cr 6+)
    Ausnahmen: Fe 3+, Fe 2+, Co 3+, Co 2+, Ni 2+

    Von André Otto, vor mehr als 4 Jahren
  1. Default

    Gibt es eine liste für die oxidationszahl des zentralatoms in komplexen? wie bestimmt man die oxidationszahl der komplexe?
    zb. gibt es CN- das hat immer die ox.-zahl -1
    gibt es noch mehr regeln?

    Von Lea Seyda, vor mehr als 4 Jahren
Mehr Kommentare