Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Das lambert-beersche Gesetz

Ergründe das Lambert-Beersche Gesetz. Lerne, was es ist, wie es mit der Intensität und Extinktion von Licht korreliert und wie es dir dabei hilft, die Konzentration einer Ethanollösung zu bestimmen. Es wird auch Begriffe wie Absorption und ausführliche Erläuterungen zu den im Gesetz genutzten Größen und Einheiten geben. Neugierig geworden? Lies weiter und tauch ein in die Welt der Chemie!

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Teste dein Wissen zum Thema Das lambert-beersche Gesetz

Was beschreibt das Lambert-Beersche Gesetz im Zusammenhang mit der Absorption von Licht durch eine Lösung?

1/5
Bewertung

Ø 3.4 / 19 Bewertungen
Die Autor*innen
Avatar
André Otto
Das lambert-beersche Gesetz
lernst du in der 11. Klasse - 12. Klasse - 13. Klasse

Das lambert-beersche Gesetz Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Das lambert-beersche Gesetz kannst du es wiederholen und üben.
  • Tipps

    Lösung

    Das Lambert-Beersche Gesetz ist eine quantitative Beschreibung der Absorption von monochromatischem Licht. Es setzt sich aus folgenden physikalischen Größen zusammen:

    • $I_0$: Lichtintensität vor dem Durchqueren des Mediums
    • $I$: Intensität des Lichtes nach Durchqueren des Mediums
    • $\lg\left( \frac{I_0}{I} \right)$: Extinktion als Maß für die Abschwächung der Lichtintensität nach dem Durchqueren des Mediums. Die Lichtintensität $I$ ist immer kleiner als $I_0$, da ein Teil der Strahlung vom Stoff absorbiert wird.
    • $c$: Konzentration der zu untersuchenden Substanz in Lösung
    • $d$: Schichtdicke bzw. Küvettenlänge, die die Weglänge des Lichtes im Medium beschreibt.
    • $\varepsilon$: Extinktionskoeffizient, der eine stoff-, lösungsmittel- und wellenlängenabhängige Größe ist.
  • Tipps

    Da die Extinktion wellenlängenabhängig ist, wird jede Messwellenlänge einzeln vermessen.

    Licht mit einer einzigen Wellenlänge ist monochromatisch.

    Lösung

    Im Spektralphotometer durchläuft das Licht, welches von einer Deuterium- oder Wolfram-Lampe stammt, folgenden Weg.

    1. Zunächst durchläuft es ein drehbares Prima, wobei durch Brechung an den Grenzflächen das weiße Licht in die einzelnen Bestandteile (Wellenlängen) zerlegt wird. Der gleiche Effekt kann anstatt eines Prismas auch mit einem Gitter (Beugung am Gitter) erreicht werden. Durch die Drehung des Prismas wird geregelt, welche Wellenlänge bzw. welcher kleiner Wellenlängenbereich zum Monochromator gelangt.
    2. Ein Teil des vom Prisma zerlegten Lichtes gelangt durch einen Spalt in den Monochromator. Dort wird über ein Spiegelsystem die einzelne Wellenlänge (z.B. 530 nm) herausgefiltert und über eine Austrittspalt gelangt es auf den ersten Drehspiegel bzw. semipermeablen Spiegel.
    3. Der Drehspiegel lässt ein Teil des Lichtes in die Probenzelle, d.h. die Küvette mit Probenlösung. Ein zweiter Teil gelangt über Reflexion an den Spiegeln in eine Vergleichszelle, in der keine Lösung vorliegt. Dieser Schritt ist notwendig, da auch die leere Küvette zu einer gewissen Verminderung der Intensität führt.
    4. Die Intensitäten nach Durchqueren der leeren Küvette und der Küvette mit Probenlösung wird mittels einer Photozelle detektiert. Die Photozelle ist häufig ein Dioden-Array-Detektor oder eine CCD.
    5. Das Signal der Photozelle gelangt zu dem Verstärker, welcher oft ein Sekundärelektronenvervielfacher ist.
    6. Im Registrierer wird die Blindextinktion, d.h. die Extinktion beim Durchqueren der leeren Küvette, von der Extinktion beim Durchqueren der Probenlösung abgezogen. Eine Auftragung der Extinktion gegeünber der Wellenlänge liefert das Absorptionsspektrum.
  • Tipps
    Lösung

    Der physikalische Hintergrund zur Herleitung vom Lambert-Beerschen Gesetz ist die Änderungsrate der Intensität $I$ nach Durchqueren eines Mediums. Diese Intensitätsabnahme entlang der Strecke d ist abhängig von der Konzentration c und einem Proportionalitätsfaktor k (in dem der Extinktionskoeffizient steckt). Da die Intensität vom Licht beim Verlassen des Mediums stets kleiner ist als die eingestrahlte Intensität $I_0$, steht auf einer Seite der Gleichung ein Minus-Zeichen:

    • $\frac{\partial I}{\partial d} = - k~\cdot~c~\cdot~I~~\left| \cdot \partial d \right.$
    • $\partial I = - k~\cdot~c~\cdot~I~\cdot~\partial d~~\left| :I \right.$
    • $\frac{\partial I}{I} = - k~\cdot~c~\cdot~\partial d$
    Die Integration von $1/x$ liefert den natürlichen Logarithmus von x $\left( \ln x \right)$. Zur Herleitung des Lambert-Beerschen-Gesetzes erfolgt die Integration über die Lichtintensität in den Grenzen der eingestrahlten Intensität $I_0$ und der austretenden Intensität $I$. Die rechte Seite der Differentialgleichung wird von der Schichtdicke von 0 bis d integriert:

    • $\int_{I_0}^I \frac{\partial I}{I} = - \int_0^d k~\cdot~c~\cdot~\partial d$
    • $\ln \left( \frac{I}{I_0} \right) = - k~\cdot~c~\cdot~d~~\left| \ln \left( \frac{x}{y} = \ln x - \ln y \right) \right.$
    • $\ln I - \ln I_0 = - k~\cdot~c~\cdot~d~~\left| \cdot - 1\right.$
    • $\ln I_0 - ln I = k~\cdot~c~\cdot~d~~\left| \ln \left( \frac{x}{y} = \ln x - \ln y \right) \right.$
    • $\ln \left( \frac{I_0}{I} \right) = k~\cdot~c~\cdot~d~~\left| \lg x = \frac{\ln x}{\lg e}\right.$
    • $\lg \left( \frac{I_0}{I} \right) = \lg e~k~\cdot~c~\cdot~d~~\left| \lg e \cdot k = \varepsilon \right.$
    • $\lg \left( \frac{I_0}{I} \right) = \varepsilon~\cdot~c~\cdot~d$
  • Tipps

    Unter dem Gesamtvolumen einer Verdünnungsreihe wird das Volumen verstanden, in dem die Tablette hätte gelöst werden können, um dieselbe Konzentration zu erhalten wie in der Verdünnungsreihe.

    Lösung

    Über das Lambert-Beersche-Gesetz kann die Konzentration der vermessenen Coffein-Lösung bestimmt werden:

    • $E = \varepsilon~\cdot~c~\cdot~d$
    • $c = \frac{E}{\varepsilon~\cdot~d} = \frac{1~mol}{9740~L~\cdot 1~cm}$
    • $c = 1,03 \cdot 10^{-4}~\frac{mol}{L}$
    Das Gesamtvolumen der Verdünnung beträgt 1 Liter, da gilt:

    • $c_G = \frac{n_G}{V_G} = \frac{n_G}{10~mL \cdot 100}$
    • $V_G = 1000~mL = 1~L$
    Über das Gesamtvolumen kann die Stoffmenge der Lösung bestimmt werden:

    • $n = c \cdot V$
    • $n = 1,03 \cdot 10^{-4}~\frac{mol}{L}~\cdot~1~L = 1,03 \cdot 10^{-4}~mol$
    Mithilfe der molaren Masse kann die gelöste Masse an Coffein bestimmt werden:

    • $m = n \cdot M$
    • $m = 1,03 \cdot 10^{-4}~mol~\cdot~194,2~\frac{g}{mol}$
    • $m = 0,0199~g \equiv 19,9~mg$
    Die Tablette enthält damit insgesamt ca. $20~mg$ Coffein.

  • Tipps

    Die gesuchte Kurve wird auch Eichgerade oder Kalibrierfunktion genannt.

    Bedenke, dass der Extinktionskoeffizient stoff-, lösungsmittel und wellenlängenabhängig ist.

    Lösung

    Um im Labor mithilfe des Lambert-Beerschen Gesetzes Konzentrationen genau zu bestimmen, verwendet man die Methode der Kalibrierfunktion bzw. Eichkurve. Dabei werden verschiedene Lösungen mit bekannter Konzentration an einer bekannten Substanz hergestellt und dessen Extinktion bei einer festen Wellenlänge vermessen. Die Auftragung der Extinktion über die Konzentration (oder umgekehrt s. Abb.) liefert nach dem Lambert-Beerschen Gesetz einen linearen Zusammenhang:

    • $y(x) = ax + b \rightarrow E(c) = \varepsilon~\cdot~d~\cdot c + 0$
    Der Achsenabschnitt (b) ist Null, da bei einer Lösung ohne Substanz keine Extinktion bzw. Absorption von Licht auftritt. Die erhaltene Abschwächung der Lichtintensität durch Effekte wie Brechung und Reflexion an der Küvette wird durch kontinuierliches Abziehen dieses Blindwertes korrigiert.

  • Tipps

    Lösungen mit großem molaren Extinktionskoeffizienten absorbieren einen Großteil des eingestrahlten Lichtes.

    Wie bei einer Waage gilt, je weniger Lichtintensität durchgelassen wird, desto schwieriger wird es technisch, die geringe Menge zu quantifizieren.

    Lösung

    Das Lambert-Beersche-Gesetz bzw. der lineare Zusammenhang zwischen Extinktion und Konzentration bei einer festen Messwellenlänge gilt nur für:

    • stark verdünnte Lösungen (kleiner Extinktionskoeffizient)
    • photostabile Verbindungen, d.h. Stoffe, die sich bei Lichtanregung nicht zersetzen
    • konstante Extinktionskoeffizienten bei gegebener Messwellenlänge, da dieser den linearen Anstieg bestimmt
    Stark konzentrierte Lösungen absorbieren einen Großteil vom eingestrahlten Licht, und die wenige durchgelassene Intensität kann nur erschwert detektiert werden. Die Reflexion, Brechung oder Beugung an der Küvette bzw. am Medium spielen für die Gültigkeit keine Rolle, da diese Effekte durch eine Blindmessung berücksichtigt werden. Allerdings sollte stets mit der gleichen Küvette (ohne Fingerabdrücken oder Kratzern) gearbeitet werden!

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.360

sofaheld-Level

6.600

vorgefertigte
Vokabeln

8.211

Lernvideos

38.688

Übungen

33.496

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden

zuri mit Bleistift und Notizbuch
Über 1,6 Millionen Schüler*innen nutzen sofatutor
Erhalten Sie in weniger als 2 Minuten ein persönliches Willkommensangebot für ihr Kind. Erhalten Sie in weniger als 2 Minuten ein persönliches Willkommensangebot für ihr Kind.
Quiz starten
Quiz starten
Quiz starten