Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Rechnen mit Stoffmenge und molarer Masse – Übung

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.3 / 20 Bewertungen
Die Autor*innen
Avatar
Team Digital
Rechnen mit Stoffmenge und molarer Masse – Übung
lernst du in der 8. Klasse - 9. Klasse - 10. Klasse

Rechnen mit Stoffmenge und molarer Masse – Übung Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Rechnen mit Stoffmenge und molarer Masse – Übung kannst du es wiederholen und üben.
  • Beschreibe die chemischen Größen.

    Tipps

    Die molare Masse gibt an, wie schwer ein Mol eines Stoffes ist.

    Die Masse wird gewogen.

    Lösung

    Um in der Chemie mit Stoffmengen und molarer Masse rechnen zu können, ist es notwendig, die wichtigsten Größen zu kennen:

    Die Stoffmenge n gibt die Anzahl der Teilchen eines Stoffes an. Diese Größe wird in der Einheit Mol ($\pu{mol}$) gekennzeichnet. Dabei entspricht ein Mol etwa $\ce{6,\!022 . 10^23}$ Teilchen. Das ist die Avogadrozahl.

    Die Masse m beschreibt die eingesetzte Menge eines Stoffes. Sie sagt aus, wie schwer oder leicht eine Stoffportion ist und gibt damit Auskunft über das Gewicht. Sie wird meist in Gramm ($\pu{g}$) aufgeführt.

    Die molare Masse M ist die Teilchenmasse und gibt an, wie schwer ein Mol eines Stoffes ist. Die molare Masse einer chemischen Verbindung entspricht der summierten relativen Atommasse ihrer Bestandteile. Die Einheit der molaren Masse ist Gramm pro Mol ($\pu{\frac{g}{mol}}$).

  • Gib an, wie wir die molare Masse von Titandioxid bestimmen.

    Tipps

    Um die molare Masse von Titandioxid bestimmen zu können, müssen wir zuerst wissen, aus welchen Elementen die Verbindung besteht.

    Erst ganz zum Schluss, wenn wir alle Werte haben, können wir sie addieren.

    Lösung

    Um die molare Masse einer Verbindung zu bestimmen, benötigen wir die Summenformel. Diese lässt sich teilweise bereits aus dem Namen der Verbindung ableiten:

    Beispiel: Titandioxid

    Durch die Silbe „-di-“ erkennen wir, dass ein Titanatom mit zwei Sauerstoffatomen verbunden ist. Sobald die Elemente und die Anzahl der Atome bekannt sind, können wir die molare Masse der Verbindung wie folgt ermitteln:


    1. Wir bestimmen die Summenformel von Titandioxid:

    $\ce{TiO2}$


    2. Wir lesen die jeweilige molare Masse im Periodensystem ab:

    Titan: $48~\pu{\frac{g}{mol}}$, Sauerstoff: $16~\pu{\frac{g}{mol}}$


    3. Die molare Masse von Sauerstoff nehmen wir doppelt:

    $2 \cdot 16~\pu{\frac{g}{mol}} = 32~\pu{\frac{g}{mol}}$


    4. Wir addieren die molaren Massen der beiden Stoffe:

    $48~\pu{\frac{g}{mol}} + 32~\pu{\frac{g}{mol}} = 80~\pu{\frac{g}{mol}}$

  • Berechne, wie viel Gramm Kohlenstoff reagieren müssen, um $8$ mol Kohlenstoffdioxid herzustellen.

    Tipps

    Reaktionsgleichung:

    $\ce{C +O2->CO2}$

    Wenn am Ende $8~\pu{mol}$ Kohlenstoffdioxid entstehen sollen, dann werden wir also auch $8~\pu{mol}$ Kohlenstoff dafür brauchen.

    Die molare Masse M wird in der Einheit $\pu{\frac{g}{mol}}$ angegeben und kann im Periodensystem der Elemente abgelesen werden.

    Die Masse m wird in Gramm ($\pu{g}$) angegeben.

    Lösung

    Um Kohlenstoffdioxid zu erzeugen, müssen Kohlenstoff und Sauerstoff reagieren. Dafür erhalten wir folgende Reaktionsgleichung:

    $\ce{C +O2->CO2}$

    Die Reaktionsgleichung gibt das Verhältnis der Teilchen und damit das der beteiligten Stoffmengen wieder. Wir sehen, dass aus einem Mol Kohlenstoff und einem Mol Sauerstoff genau ein Mol Kohlenstoffdioxid entsteht.
    $\to$ Wenn am Ende $\boldsymbol{8~\pu{mol}}$ Kohlenstoffdioxid entstehen sollen, dann werden wir also auch $\boldsymbol{8~\pu{mol}}$ Kohlenstoff dafür brauchen.

    Jetzt müssen wir nur noch umrechnen, welcher Masse Kohlenstoff das entspricht, denn danach ist gefragt.


    1. Überblick verschaffen:

    • gegeben: $\boldsymbol{n}$ $= 8~\pu{mol}$, $M =$ $\mathbf{12}$ $\pu{\frac{g}{mol}}$
    • gesucht: $\boldsymbol{m}$

    2. Formel umstellen:

    $n = \frac{m}{M}~~~~~~~~~~~\vert \cdot \boldsymbol{M}$

    $m = n \cdot M$


    3. Werte einsetzen und berechnen:

    $m_C = n_C \cdot M_C$

    $m_C =$ $\mathbf{8}~\pu{mol}~\cdot \mathbf{12}$ $~\pu{\frac{g}{mol}}$

    $m_C = \mathbf{96}~\pu{g}$

  • Bestimme die gefragten chemischen Größen.

    Tipps

    Die ersten drei Fragen kannst du mit den Kacheln des Periodensystems beantworten.
    Für die letzten beiden Fragen musst du die Formel nutzen.

    Das Stickstoffmolekül $\ce(N_2)$ hat folgende molare Masse:

    $28 ~\pu{\frac{g}{mol}} ~(2~\cdot 14~\pu{\frac{g}{mol}})$

    Für die letzte Frage musst du die Formel nach der Masse $m$ umstellen:

    $m = M \cdot n$

    Lösung

    1. Welche molare Masse hat Titan $\ce{(Ti)}$?:

    $\to \mathbf{48}$ $\pu{\frac{g}{mol}}$

    Das kannst du aus dem Periodensystem ablesen.


    2. Welche molare Masse hat Sauerstoff $\ce{(O_2)}$?:

    $\to \mathbf{32}$ $\pu{\frac{g}{mol}}$

    Das kannst du aus dem Periodensystem ablesen.
    Doch Achtung: Du musst die molare Masse von Sauerstoff zweimal nehmen:

    $2 \cdot 16 ~\pu{\frac{g}{mol}} = 32 ~\pu{\frac{g}{mol}}$


    3. Welche molare Masse hat Titandioxid $\ce{(TiO_2)}$?:

    $\to \mathbf{80}$ $\pu{\frac{g}{mol}}$

    Das kannst du berechnen, indem du die molare Masse von Titan und Sauerstoff addierst:

    $48~\pu{\frac{g}{mol}} + 2 \cdot 16 ~\pu{\frac{g}{mol}} = 80 ~\pu{\frac{g}{mol}}$


    4. Wie viel Mol sind $200~\pu{g}$ Titandioxid?:

    $\to \mathbf{2,\!5}$ $\pu{mol}$

    Das kannst du berechnen, indem du die Formel nutzt:

    $n = \frac{m}{M}$

    $n = \frac{200~\pu{g}}{80 \pu{\frac{g}{mol}}} = 2,\!5~\pu{mol}$


    5. Wie viel Gramm Titan müssen reagieren, um $10~\pu{mol}$ Titandioxid herzustellen?:

    $\to \mathbf{480}$ $\pu{g}$

    Das kannst du berechnen, indem du die Formel nutzt und umstellst:

    $n = \frac{m}{M}~~~~~~\vert \cdot M$

    $m = n \cdot M$

    $m = 10~\pu{mol} ~\cdot 48~\pu{\frac{g}{mol}} = 480~\pu{g}$

  • Gib die molare Masse der angegeben Elemente an.

    Tipps

    Die molare Masse wird in der Einheit $\pu{\frac{g}{mol}}$ angegeben.

    Auf diesem Bild siehst du die molare Masse von Cäsium. Sie beträgt $133~\pu{\frac{g}{mol}}$, da wir auf ganze Zahlen runden.

    Lösung

    Im Periodensystem können wir einige wichtige Merkmale der Elemente ablesen, zum Beispiel die Anzahl der Elektronen, die Anzahl der Schalen oder die molare Masse. Wichtig ist, dass wir wissen, wie beziehungsweise wo wir das ablesen können.

    Die Ordnungszahl nummeriert die Elemente der Reihe nach, von links nach rechts, von oben nach unten im Periodensystem durch. Kohlenstoff hat beispielsweise die Ordnungszahl $\mathbf{6}$. Sie gibt die Anzahl der Protonen beziehungsweise Elektronen in einem Atom an.

    Die molare Masse gibt an, wie schwer genau ein Mol eines Stoffes ist. Im Beispiel Kohlenstoff ist die molare Masse $\boldsymbol{12~\pu{\frac{g}{mol}}}$.

    Sauerstoff hat eine molare Masse von $\boldsymbol{16~\pu{\frac{g}{mol}}}$, Silizium von $\boldsymbol{28~\pu{\frac{g}{mol}}}$ und Zinn von $\boldsymbol{119~\pu{\frac{g}{mol}}}$.

  • Entscheide, um welches Molekül es sich handelt, wenn eine molare Masse von $46$ g/mol vorliegt.

    Tipps

    Die molare Masse einer Verbindung ergibt sich aus den beteiligten Atomen.

    In der Verbindung Titandioxid $\ce{(TiO_2)}$ kommt Sauerstoff zweimal vor, also nehmen wir dessen molare Masse auch $\boldsymbol{\cdot~ 2}$.

    Lösung

    Im Periodensystem können wir einige wichtige Merkmale der Elemente ablesen, zum Beispiel die Anzahl der Elektronen, die Anzahl der Schalen und die molare Masse. Wichtig ist, dass wir wissen, wie beziehungsweise wo wir das ablesen können.

    Die molare Masse gibt an, wie schwer genau ein Mol eines Stoffes ist. Im Beispiel Kohlenstoff sind das $\boldsymbol{12~\pu{\frac{g}{mol}}}$.

    Die Summenformel gibt das Verhältnis der Elemente in der Verbindung an. Das heißt, wenn beispielsweise zwei Kohlenstoffatome in einer Verbindung vorhanden sind, dann müssen wir die molare Masse doppelt nehmen.


    Die richtige Antwort in diesem Beispiel lautet Ethanol $\ce{(C_2H_6O)}$, denn:

    • Kohlenstoff hat eine molare Masse von $12$. Da zwei Kohlenstoffatome gebunden sind, beträgt die molare Masse $\boldsymbol{24~\pu{\frac{g}{mol}}}$.
    • Die molare Masse eines Wasserstoffatoms ist $1$. In Ethanol sind sechs Wasserstoffatome vorhanden. Somit beträgt die molare Masse von Wasserstoff $\boldsymbol{6~\pu{\frac{g}{mol}}}$.
    • Die Verbindung Ethanol verfügt über ein Sauerstoffatom. Die molare Masse von Sauerstoff ist $\boldsymbol{16~\pu{\frac{g}{mol}}}$.

    $\Rightarrow$ Wenn wir die molare Masse der drei beteiligten Elemente addieren, dann erhalten wir folgendes Ergebnis:

    $24~\pu{\frac{g}{mol}} + 6~\pu{\frac{g}{mol}} + 16~\pu{\frac{g}{mol}} = 46~\pu{\frac{g}{mol}}$

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.178

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.936

Lernvideos

37.099

Übungen

34.351

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden