Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Anionische Polymerisation

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 3.3 / 8 Bewertungen
Die Autor*innen
Avatar
André Otto
Anionische Polymerisation
lernst du in der 11. Klasse - 12. Klasse - 13. Klasse

Anionische Polymerisation Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Anionische Polymerisation kannst du es wiederholen und üben.
  • Tipps

    Die Reaktion wird durch den Initiator eingeleitet.

    Das Molekül wird beständig größer, die Reaktion kann innehalten. Das Polymer ist jedoch nicht tot.

    Kleine Moleküle beenden die Polymerisation.

    Lösung
    1. Natriummethylat dissoziiert in das Anion (die Base) und das Natrium-Ion. $CH_3O^{\ominus}Na^{\oplus}\;\rightleftharpoons\;CH_3O^{\ominus}\;+\;Na^{\oplus}$
    2. Das Methylat-Ion reagiert mit einem Monomer-Molekül. Es entsteht ein Carbanion. $CH_3O^{\ominus}\;+\;CH_2=C(CH_3)-COOCH_3\;\longrightarrow\;CH_3O-CH_2-C^{\ominus}(CH_3)-COOCH_3$
    3. Das Carbanion reagiert mit einem weiteren Monomer-Molekül und es entsteht ein größeres Carbanion. $CH_3O-CH_2-C^{\ominus}(CH_3)-COOCH_3\;+\;CH_2=C(CH_3)-COOCH_3\;\longrightarrow$ $\;CH_3O-CH_2-C^{\ominus}(CH_3)(COOCH_3)-CH_2-C^{\ominus}(CH_3)-COOCH$
    4. Es kommt zum fortlaufenden Kettenwachstum. Das gebildete Carbanion wird größer und größer.
    5. Der vollständige Verbrauch des Monomers ist erreicht. Das Wachstum des Carbanions setzt sich fort, bis das gesamte Monomer verbraucht ist.
    6. Es entsteht ein lebendes Polymer. Das riesige Carbanion kann jederzeit weiter reagieren, wenn ihm frisches Monomer verabreicht wird.
    7. Wasser oder Salzsäure führen zum Kettenabbruch. Die schwache Dissoziation des Wassers reicht bereits, um zum Kettenabbruch zu führen. Hervorgerufen wird er durch die Protonen, die mit dem Carbanion reagieren. Natürlich verläuft dieser Prozess mit Salzsäure bedeutend schneller.
  • Tipps

    Vergewissere dich, dass ein Teilchen gebildet wird, das einer der Base-Definitionen zuzuordnen ist.

    Es gibt drei Möglichkeiten des Verständnisses einer Base: Entstehung eines Hydroxid-Ions $OH^\ominus$, mögliche Aufnahme eines Protons $H^\oplus$ oder Bildung eines Anions $A^\ominus$.

    Lösung

    Ethanol $C_2H_5OH$: Es wird keine Lewis-Base durch Dissoziation bei gemäßigten Bedingungen gebildet.

    Wasser $H_2O$: Es handelt sich (unter geeigneten Umständen) um eine Brönsted-Base $H_2O\;\longrightarrow\;H^\oplus\;+\;OH^\ominus$.

    Natriumhydroxid $NaOH$: Das ist eine starke Arrhenius-Base.

    Natriumchlorid $NaCl$: Das ist ein neutrales Salz, keine Base.

    Natriummethylat $CH_3O^\ominus\!Na^\oplus$: Das entstehende Anion $CH_3O^\ominus$ ist eine sehr starke Lewis-Base.

    Butylchlorid $CH_3CH_2CH_2CH_2Cl$: Diese Verbindung ist als Base ungeeignet.

    Acetamid $CH_3CONH_2$: Diese Verbindung ist recht inaktiv.

    Butyllithium $CH_3CH_2CH_2CH_2^\ominus\!Li^\oplus$: Das entstehende Carbenium-Ion $CH_3CH_2CH_2CH_2^\ominus$ ist eine sehr starke Lewis-Base.

    Natriumamid $NaNH_2$: Das entstehende Amid-Ion $NH_2^\ominus$ ist ebenfalls eine sehr starke Lewis-Base.

  • Tipps

    Die Wirkung des Katalysators, die Aktivierungsenergie und die Reaktionsgeschwindigkeit stehen in einem engen Zusammenhang.

    Katalysator und Initiator unterscheiden sich nur in einer Eigenschaft.

    Lösung

    Ein Katalysator beschleunigt eine chemische Reaktion. Durch die Bildung von Verbindungen mit den Reaktionspartnern vermindert sich die Aktivierungsenergie der Reaktion. Dadurch nimmt die Reaktionsgeschwindigkeit zu. In allen diesen Eigenschaften stimmen Initiatoren und Katalysatoren in vollem Umfang überein. Die Initiatoren sind Basen. Sie leiten die Polymerisation ein. Sie gehen wie die Katalysatoren eine Verbindung mit dem Monomer ein. Katalysator und Initiator unterscheiden sich in einem wichtigen Punkt. Der Katalysator geht mit dem Edukt eine Zwischenverbindung ein. Diese wird vom Produkt wieder abgelöst. Der Initiator hingegen bildet mit dem Edukt eine bleibende Bindung. Man kann sie auch nach Ablauf der Reaktion im Produkt finden. Daher sind Katalysator und Initiator nicht ein und dasselbe.

  • Tipps

    Die freie Drehbarkeit um die Bindung ist bei Radikalen besonders hoch.

    Eine regelmäßige Struktur führt zu kristallinem Verhalten.

    Lösung

    Anionische Polymerisation

    Der Initiator der Reaktion ist eine Base. Während der Polymerisation bilden sich Carbanionen. Die Reaktion kann bereits bei Raumtemperatur ablaufen, wie man am Beispiel des Sekundenklebers gut erkennen kann. Die Reaktion zu PMMA ist weniger heftig, setzt aber ebenfalls ein. Bereits bei anderen Kunststoffen haben wir gelernt, dass die ionische Polymerisation eher eine regelmäßige Struktur aufweist. So ist es auch hier. Der Bau des Moleküls ist isotaktisch. Das bedeutet, dass die Substituenten alle zur gleichen Seite zeigen. Diese räumliche Anordnung führt dazu, dass der Kunststoff kristallin ist, zumindest weist er einen gewissen Grad an Kristallinität auf.

    Radikalische Polymerisation

    Der Initiator der radikalischen Polymerisation ist häufig ein Peroxid. Selbstverständlich läuft die Reaktion unter fortlaufender Entstehung von Radikalen ab. Im Gegensatz zur anionischen Polymerisation muss hier die Umgebung etwas erwärmt werden. Bei etwa 60 - 70 °C setzt die Reaktion ein. Diese Temperatur ist notwendig, um aus dem Peroxid freie Radikale für den Start der Reaktion zu generieren. Die radikalische Polymerisation führt zu einer ataktischen Struktur des Polymer-Moleküls. Das hängt mit der guten Drehbarkeit der einzelnen Fragmente im Molekül um die chemischen Bindungen zusammen. Als Ergebnis enthält man einen völlig amorphen Kunststoff. Das ist ein Stoff, dem jegliche Eigenschaften eines Kristalls fehlen.

  • Tipps

    In der Skelettschreibweise bedeutet = nicht nur die Doppelbildung oder Ethen, sondern auch ein Ethen-Gerüst mit Substituenten.

    Der einfache Strich - an der Doppelbindung symbolisiert die Methyl-Gruppe $CH_3-$.

    Nur bestimmte Gruppen an der Doppelbindung = ermöglichen die anionische Polymerisation.

    Lösung

    Das Auswahlkriterium ist relativ einfach: Nur elektronenziehende Reste (Gruppen) an der Doppelbindung (-I-Effekt) ermöglichen die anionische Polymerisation.

    1. Monomer: Sowohl die Cyano-Gruppe $-CN$ als auch die Ester-Gruppe $-COOMe$ (Me = Methyl) ziehen kräftig Elektronen.
    2. Monomer: Die beiden Methyl-Gruppen $CH_3-$ ziehen keine Elektronen.
    3. Monomer: Es handelt sich um Toluol. Das ist eine relativ unpolare Verbindung. Die Phenyl-Gruppe $C_6H_5-$ zieht keine Elektronen.
    4. Monomer: Die Nitro-Gruppe $NO_2-$ zieht kräftig Elektronen.
    5. Monomer: Die Cyano-Gruppe $-CN$ zieht kräftig Elektronen.
    6. Monomer: Es handelt sich um Propen (Propylen). Das ist eine relativ unpolare Verbindung. Die Methyl-Gruppe $CH_3-$ zieht keine Elektronen.
    7. Monomer: Es handelt sich um Isopren. Die unpolare Verbindung zieht keine Elektronen.
    8. Monomer: Die beiden Cyano-Gruppen $-CN$ ziehen kräftig Elektronen.
  • Tipps

    Erinnere dich an die Anfälligkeit von Estern und Ethern gegenüber Säuren und Basen.

    Bedenke, wie relativ kompakt PMMA, POM und PE gebaut sind.

    Vergleiche die chemische Stabilität einer Kohlenstoff-Kette mit der einer Polyether-Kette.

    Lösung

    Grundsätzlich sind PMMA und POM gegenüber verdünnten Säuren wie Basen resistent. Als Verbindung mit vielen Ester-Gruppen ist PMMA eher anfällig gegenüber Basen und weniger anfällig gegenüber Säuren. POM als Polyether hingegen zeigt eine höhere Empfindlichkeit beim Kontakt mit Säuren und relative Stabilität gegenüber Basen.

    Die Hauptkette im PMMA ist eine Kohlenstoffkette und demnach gegenüber Säuren und Basen stabil. Diese chemische Trägheit kennen wir bereits von den Alkanen. Die Stabilität ist hier höher, als es bei der Hauptkette von POM der Fall ist. Denn bei POM haben wir Etherbindungen und die sind säureempfindlich.

    Die Dichte von POM ist höher als die Dichte von Polyethylen (PE). Als plausible Erklärung dient die Tatsache, dass ein Sauerstoffatom mit der Atommasse von 16 kompakter gebaut ist als die Methylen-Gruppe $-CH_2$ mit der Atommasse von 14.

    PMMA hat eine höhere Dichte als PE und versinkt daher im Wasser. Offensichtlich führt die Dipol-Dipol-Wechselwirkung zwischen den Ester-Gruppen zu einer kompakteren Struktur von PMMA im Vergleich zu PE.

    Die höhere Dichte von POM gegenüber PMMA erklärt sich durch die kompaktere Struktur bei vergleichbaren zwischenmolekularen Wechselwirkungen.

    POM ist gegenüber oxidierenden Medien anfällig. Das trifft auf die meisten organischen Verbindungen zu.

    POM ist beständig gegenüber Benzin, Benzol und Ethanol, PMMA wird von Ethanol, Aceton und Benzol angegriffen. Die generell höhere Anfälligkeit von POM gegenüber Lösungsmitteln erklärt sich aus der höheren Kompaktheit der übermolekularen Struktur im Vergleich zu PMMA.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.360

sofaheld-Level

6.600

vorgefertigte
Vokabeln

8.212

Lernvideos

38.688

Übungen

33.496

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden