Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Polyaddition

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.4 / 11 Bewertungen
Die Autor*innen
Avatar
André Otto
Polyaddition
lernst du in der 11. Klasse - 12. Klasse - 13. Klasse

Polyaddition Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Polyaddition kannst du es wiederholen und üben.
  • Tipps

    Urethane enthalten eine Amid-Gruppe.

    Lösung

    Urethan lässt sich beschreiben als Carbanat mit einer benachbarten Ester-Funktion. Das Molekül enthält also ein Stickstoff-Atom, an das zwei Reste gebunden sind. Die dritte Bindungsposition wird von einem Kohlenstoffatom eingenommen, an welches ein Sauerstoffatom mit einer Doppelbindung und ein Sauerstoffatom mit einer Einfachbindung gebunden sind. Die zweite Bindungsposition des einfach gebundenen Sauerstoffatoms wird von einem weiteren, variablen Rest eingenommen.
    Damit ergibt sich, wegen der drei organischen Reste, eine hohe Strukturvielfalt unter den Urethanen. Enthalten einer oder mehrere der organischen Reste wieder Urethan-Gruppen, so spricht man von einem Polyurethan.

  • Tipps

    Isocyanate verfügen über die funktionelle Gruppe $O=C=N-$.

    Lösung

    Die Polyaddition von Polyurethan unterscheidet sich von anderen Methoden zur Herstellung von Polymeren. Bei anderen Methoden, wie der kationischen Polymerisation, werden Monomere aktiviert. Die Monomere verbinden sich mit weiteren Monomeren bis aus den aktivierten Monomeren Polymer-Ketten geworden sind.

    Bei der Polyaddition handelt es sich um Reaktionen von zwei unterschiedlichen Verbindungen, die nicht die Monomere des Polymers sind. Die Edukte haben an beiden Enden funktionelle Gruppen, die miteinander reagieren können. Bei der Herstellung von Polyurethanen werden beispielsweise Verbindungen verwendet, die an beiden Seiten über eine Isocyanat-Gruppe $(O=C=N-)$. Diese werden mit Diolen zur Reaktion gebracht, die an beiden Enden des Moleküls über Hydroxy-Gruppen $(-OH)$ verfügen.
    Die Hydroxy-Gruppen können mit den Isocyanat-Gruppen reagieren. Die Polymere entstehen also aus einer Reihe von Einzelreaktionen, es findet kein Kettenwachstum statt! Aus den Edukten entstehen zunächst Dimere und Trimere, die dann zu größeren Polymeren reagieren.

  • Tipps

    Seitenketten können Kohlenwasserstoff-Ketten sein, aber auch funktionelle Gruppen enthalten.

    Lösung

    Polyurethane haben ein weites Feld an Einsatzmöglichkeiten, da sie sehr unterschiedliche mechanische, physikalische und chemische Eigenschaften aufweisen. Maßgeblich für diese Eigenschaften sind die Seitenketten und funktionellen Gruppen, aber auch der Grad der Verzweigung.
    Steuern lassen sich die Eigenschaften durch die Wahl der beiden Komponenten. Es kommen nur wenige Diisocyanate zum Einsatz, da diese aufwändiger herzustellen sind.

    Die zweite Komponente enthält den organischen Rest $R^1$. Da mehrwertige Alkohole leicht zu synthetisieren sind, lässt sich eine Vielzahl unterschiedlicher Diole einsetzen. Diese haben unterschiedliche Kettenlängen, was zum Beispiel den Schmelzpunkt des Produkts beeinflusst. Werden Polyole mit mehr als zwei Alkohol-Funktionen verwendet, entstehen zusätzliche Verzweigungen, da auch an den nicht-endständigen $-OH$-Gruppen Additionsreaktionen stattfinden. Der Vernetzungsgrad bestimmt die mechanischen Eigenschaften wie Elastizität und Härte des Polyurethans.

  • Tipps

    Beachte die Kettenlängen und die Seitenketten.

    Das Diol ist jeweils blau gezeichnet, das Diisocyanat grün.

    Lösung

    Gezeigt sind vier Beispiele von Polyadditionsreaktionen von Diolen mit Diisocyanaten. Die Reaktionsprodukte unterscheiden sich voneinander in den organischen Resten, die sich zwischen den funktionellen Gruppen befinden. Gut zu erkennen ist dies an den beiden Verbindungen, die aus dem Toluoldiisocyanat entstanden sind: Die Toluol-Reste befinden sich zwischen zwei Urethan-Gruppen.

    Die Beispiele zeigen, dass durch den Einsatz von langkettigen Diolen eine hohe Strukturvielfalt erhalten werden kann. Zwischen den beiden Hydroxy-Gruppen können lange Kohlenwasserstoff-Ketten mit Seitenketten oder Ether-Brücken liegen. Dies erhöht die mechanische Stabilität des Polyurethans und verursacht einen höheren Schmelzpunkt des Kunststoffes.

  • Tipps

    Amide leiten sich von den Carbonsäuren ab, indem die Hydroxy-Gruppe durch eine Amino-Gruppe ausgetauscht wird.

    Lösung

    Da es sich bei $R^3$ um einen organischen Rest handelt, ist im Urethan-Molekül eine Ester-Gruppe enthalten: Eine Aldehyd-Funktion $(-(C=O)-)$ liegt benachbart zu einer Ether-Funktion $(-C-O-C-)$.
    Ebenfalls neben der Aldehyd-Gruppe ist eine Amino-Gruppe $(-NR_2)$ zu finden. Daher handelt es sich beim Urethan um ein Amid.
    Amid-Gruppe und Esther-Gruppe teilen sich also eine Aldehyd-Funktion.

  • Tipps

    Zunächst soll der erste Reaktionsschritt beschrieben werden, dann der zweite.

    Lösung

    Polyadditionen können nicht nur zwischen Diolen und Diisocyanat-Molekülen stattfinden. Dieses Beispiel zeigt, dass auch Reaktionen zwischen anderen Reaktionspartnern möglich sind.
    In diesem Fall ist die Reaktion von einem Diamin mit einem Diisocyanat-Molekül gezeigt. Die Reaktion ähnelt der bereits bekannten Reaktion zwischen einem Alkohol und einem Diisocyanat. Auch hier kommt es zur Knüpfung einer neuen Bindung, diesmal jedoch zwischen dem Kohlenstoffatom der Isocyano-Gruppe und dem Stickstoffatom der Amino-Gruppe. Durch eine Umlagerung eines $H^+$-Ions im Molekül kommt es, wie bei der bereits bekannten Reaktion, zum Ladungsausgleich.

    Mit dieser Polyaddition zwischen Diaminen und Diisocyanaten lassen sich Kunststoffe der Klasse der Polyharnstoffe herstellen. Diese werden in ähnlich hoher Vielfalt eingesetzt wie die Polyurethane.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.360

sofaheld-Level

6.600

vorgefertigte
Vokabeln

8.212

Lernvideos

38.688

Übungen

33.496

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden