30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Oxidation und Reduktion – Energiegewinnung im Körper 09:46 min

Textversion des Videos

Transkript Oxidation und Reduktion – Energiegewinnung im Körper

Hallo! Willkommen zum Video zum Thema „Chemische Grundlagen der Oxidation und Reduktion“. In diesem Video werden dir alle Grundlagen vermittelt, die du brauchst, um die Vorgänge des Stoffwechsels zu verstehen, die im Biologieunterricht behandelt werden. Wir besprechen die Oxidation, die Reduktion und die Redoxreaktion. Das alles wird an konkreten Beispielen aus dem Gebiet des Stoffwechsels veranschaulicht. Unter der Oxidation versteht man die Abgabe von Elektronen. Die Reduktion ist die Annahme von Elektronen. Ein Atom oder ein Molekül, das Elektronen aufnimmt, ist ein Oxidationsmittel. Man spricht auch von einem „Elektronenakzeptor“. Ein Atom oder Molekül, das Elektronen abgibt, wird Reduktionsmittel genannt. Man spricht auch von einem „Elektronendonator“. Ein Reduktionsmittel wird im Laufe einer Oxidationsreaktion zu einem Oxidationsmittel oxidiert. Dabei werden ein oder mehrere Elektronen frei. In diesem Video werden wir Reduktionsmittel künftig mit „Red“ und Oxidationsmittel mit „Ox“ abkürzen. Ein Oxidationsmittel kann unter Annahme von Elektronen reduziert werden. Bei dieser Reduktion entsteht aus dem Oxidationsmittel ein Reduktionsmittel. Reduktion und Oxidation sind bei einer chemischen Reaktion miteinander gekoppelt. Man spricht deshalb auch von einer „Redoxreaktion“. Eine Substanz, wir nennen sie Reduktionsmittel 1, wird oxidiert, wobei das Oxidationsmittel 1 entsteht. Eine andere Substanz wiederum wird reduziert. Oxidationsmittel 2 wird also reduziert zu dem Reduktionsmittel 2. Man spricht auch von „korrespondierenden Redoxpaaren“. Sie werden auch als „Redoxsysteme“ bezeichnet. So viel zu den Grundlagen der Redoxreaktionen. Wir gehen jetzt näher auf die Redoxreaktionen ein, die beim Stoffwechsel eine Rolle spielen: Redoxreaktionen organischer Moleküle. Bei der Oxidation organischer Moleküle werden meist zwei Elektronen abgegeben. Dies geschieht meist anhand der Abgabe von zwei Elektronen und zwei H+-Ionen. Diese werden auch als Protonen bezeichnet. Das entspricht also formal zwei Wasserstoffatomen. Die Wasserstoffabgabe entspricht also einer Oxidation. Die Wasserstoffaufnahme entspricht einer Reduktion. Wir besprechen jetzt als Beispiel die Oxidation von Malat zu Oxalacetat. Diese Reaktion findet beim Citratzyklus statt. Dieser wird auch als „Zitronensäurezyklus“ oder „Krebs-Zyklus“ bezeichnet. Das Molekül Malat wird unter Abgabe von zwei Elektronen und zwei H+-Ionen oxidiert. Es entsteht ein Molekül Oxalacetat. Wie du siehst, ist das C-Atom, an dem die Reaktion stattfindet, mit einer OH, also einer sogenannten „Hydroxygruppe“ und einem H-Atom verbunden. Durch die Oxidation entsteht eine Verbindung, die an dem C-Atom eine Doppelbindung zum Sauerstoff aufweist. Man spricht von einer sogenannten „Carbonylgruppe“. Als nächstes Beispiel besprechen wir die Reduktion von Ethanal zu Ethanol. Diese Reaktion findet zum Beispiel während der alkoholischen Gärung statt. Ethanal gehört zu der Gruppe der Aldehyde, denn es hat eine Carbonylgruppe an einem endständigen C-Atom. Deshalb wird das Ethanal auch „Acetaldehyd“ genannt. Ethanal wird unter Aufnahme von zwei Elektronen und zwei H+-Ionen zu Ethanol reduziert. Ethanol ist ein Alkohol. Wie du siehst, findet die Reaktion an der Aldehydgruppe statt. Ein Wasserstoffatom verbindet sich mit dem C-Atom. Die Doppelbindung zum Sauerstoff wird aufgespalten. Stattdessen entsteht eine OH-Gruppe, eine sogenannte „Hydroxygruppe“ an der sich das andere Wasserstoffatom anlagert. Wie werden Elektronen innerhalb des Körpers übertragen? In der Zelle steht ein System von Elektronenüberträgern zur Verfügung. Einer der Bekanntesten ist das Coenzym NAD. Das ist die Abkürzung für „Nikotinamid-adenin-dinukleotid“. Coenzyme werden auch als „Cosubstrate“ bezeichnet. Es handelt sich im näheren Sinne um kein echtes Enzym, denn es geht verändert aus der Reaktion hervor. Heutzutage wird es deshalb treffender als Cosubstrat bezeichnet. NAD+ ist die oxidierte Form. In der Regel werden dem NAD+ zwei Elektronen zusammen mit zwei H+ übertragen. Dadurch entsteht NADH. Dies ist die reduzierte Form. Das weitere H+ wird an das umgebende Medium abgegeben. Da NADH zwei reduzierten Elektronen entspricht, bezeichnet man es als „Reduktionsäquivalent“. Die Rückreaktion von NADH und H+ zu NAD+ erfolgt unter Abgabe von zwei Elektronen und zwei H+. Es handelt sich also um einen Elektronenüberträger und gleichzeitig einen Protonenüberträger. Auch bei anderen Coenzymen beziehungsweise Cosubstraten handelt es sich um Reduktionsäquivalente. Du hast bis jetzt über NAD+ in der oxidierten Form gelernt. Durch die Annahme von zwei Elektronen und zwei H+ wird es zu der reduzierten Form NADH und H+. Außerdem existiert das NADP+. Die reduzierte Form lautet: NADPH und H+. Ein weiteres Reduktionsäquivalent ist das FAD. Die reduzierte Form lautet: FADH2. Diese unterschiedlichen Reduktionsäquivalente können auch unterschiedliche Rollen in der Zelle aufweisen. NAD+ und FAD spielen beide eine Rolle bei Abbauprozessen in der Zelle, zum Beispiel bei der Oxidation der Nährstoffe zur Energiegewinnung. Ein Beispiel dafür wäre die Oxidation von Glucose bei der Glykolyse. Das Reduktionsäquivalent NADP+ spielt hingegen eine Rolle bei Aufbauprozessen in der Zelle. Zum Beispiel bei der Baustoffsynthese der Zelle oder bei der Photosynthese. Wir kommen zur Zusammenfassung des Videos, in dem dir die chemischen Grundlagen der Oxidation und Reduktion nahegebracht worden sind: Unter Oxidation versteht man die Elektronenabgabe. Unter Reduktion versteht man die Elektronenaufnahme. Ein Oxidationsmittel ist ein Elektronenakzeptor. Er wird selbst reduziert. Ein Reduktionsmittel ist ein Elektronendonator. Er wird selbst oxidiert. Außerdem hast du gelernt, was man unter korrespondierenden Redoxpaaren versteht. Du hast gelernt, dass bei Redoxreaktionen die Reduktion und Oxidation gleichzeitig ablaufen. Wir sind auf die Redoxreaktionen organischer Moleküle eingegangen. Dabei werden meistens zwei Elektronen zusammen mit zwei H+-Ionen übertragen. Als Beispiele haben wir die Oxidation von Malat zu Oxalacetat besprochen und die Reduktion von Ethanal zu Ethanol. Zuletzt sind wir auf Elektronenüberträger eingegangen, beziehungsweise Reduktionsäquivalente. Wir haben unterschiedliche Reduktionsäquivalente in der oxidierten und reduzierten Form besprochen: NAD+ und NADH und H+, FAD und FADH2, NADP+ und NADPH und H+. Die ersten beiden spielen eine Rolle bei Abbauprozessen. Letzteres spielt eine Rolle bei Aufbauprozessen. Danke für deine Aufmerksamkeit. Tschüss, bis zum nächsten Video!

5 Kommentare
  1. Hallo Lukas,
    beide Verbindungen (Ethanol sowie Ethanal) haben jeweils nur zwei C-Atome. Sie unterscheiden sich jeweils nur durch ihre funktionelle Gruppe (Ethanal: CHO-Gruppe und Ethanol: OH-Gruppe). Daraus resultiert, dass die Anzahl an Wasserstoffatomen unterschiedlich ist. Diese Wasserstoff-Atome kommen als Ionen aus dem Medium und werden zur Reduktion benötigt (siehe oberhalb des Reaktionspfeils). Sie könnten beispielsweise vom Wasser kommen, welches als Lösungsmittel dient.

    Von Jan Ruppe, vor fast 6 Jahren
  2. Das mit Ethanol habe ich nicht kapiert,
    Ethanal hat zusammen 4x H und 4x C,
    Ethanol hat zusammen 6x H und 5x C.
    Also muss von irgendwo 2x H und 1x C extern kommen oder nicht?
    Und dann glaube ich auch nicht dass das Ethanol sich diese Einheiten vom Ethanal holt, es sei denn wir haben 2x Ethanal und daraus wird 1x Ethanol + 1x (beziehungsweise 2x) Abfallprodukt (nenne ich jetzt mal den verbleibenden Rest).
    Kann mich jemand aufklären?
    Liebe Grüße
    Lukas

    Von Deleted User 102969, vor fast 6 Jahren
  3. Hallo!
    Oxidation und Reduktion beziehen sich hier auf die Elektronenauf- bzw. -abgabe. Oxidation und Reduktion sind nicht nur auf Sauerstoff beschränkt. Auch andere Stoffe können reduzierend und oxidierend wirken. Also keine Angst. In diesem Video gab es keine Versprecher.
    Du kannst dir auch zusätzlich das Video aus der Chemie "Definitionen (Oxidation und Reduktion)" anschauen. Dort werden dir die Grundlagen dieser beiden Reaktionen genauer erklärt.

    Von Jan Ruppe, vor mehr als 6 Jahren
  4. Und bei einer Oxidation wird SAUERSTOFF(!!!) aufgenommen und nicht abgegeben... Und bei einer Reduktion ist das genau anders...-.-

    Von G.Maatz, vor mehr als 6 Jahren
  5. wie witzig ich bin in der siebten klasse und hab das thema in chemie (: das video ist gut ! LG LOUISE

    Von Deleted User 71843, vor mehr als 6 Jahren

Oxidation und Reduktion – Energiegewinnung im Körper Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Oxidation und Reduktion – Energiegewinnung im Körper kannst du es wiederholen und üben.

  • Definiere ausgewählte Begriffe zur Oxidation und Reduktion.

    Tipps

    Ein Oxidationsmittel nimmt Elektronen auf. Es ist ein Elektronenakzeptor, weil es Elektronen „akzeptiert“.

    Ein Reduktionsmittel gibt Elektronen ab. Es ist ein Elektronendonator, weil es Elektronen „spendet“.

    Bei einer Redoxreaktion sind Reduktion und Oxidation gekoppelt. Stoff $A$ wird oxidiert und gibt ein $e^-$ ab. Stoff $B$ wird reduziert und nimmt ein $e^-$ auf:
    $A$ $+$ $B$ $\longrightarrow$ $A^+$ $+$ $B^-$.

    Im Beispiel $A$ $+$ $B$ $\longrightarrow$ $A^+$ $+$ $B^-$ sind
    $A$ & $A^+$ bzw.
    $B$ & $B^-$
    Redoxsysteme, also korrespondierende Redoxpaare.

    Lösung

    Rechts siehst du eine bildliche Darstellung einer Reduktion bzw. Oxidation. Der Beutel soll dabei die Elektronen symbolisieren.

    Bei einer Redoxreaktion laufen gleichzeitig eine Reduktion und eine Oxidation ab (deshalb auch Reduktions-Oxidations-Reaktion).

    Betrachten wir so eine Redoxreaktion anhand einer Gleichung:
    $A$ $+$ $B$ $\longrightarrow$ $A^+$ $+$ $B^-$.

    Stoff $A$ gibt als Reduktionsmittel bzw. Elektronendonator ein Elektron ($e^-$) ab und wird oxidiert.
    Die Teilgleichung dieser Oxidation heißt: $A~\longrightarrow~A^+~+~e^-$.

    Stoff $B$ nimmt als Oxidationsmittel bzw. Elektronenakzeptor ein $e^-$ auf und wird reduziert.
    Die Teilgleichung dieser Reduktion heißt: $B~+~e^-~\longrightarrow~B$.

    In unserem Beispiel sind $A$ und $A^+$ ein korrespondierendes Redoxpaar und $B$ und $B^-$ sind ebenfalls ein korrespondierendes Redoxpaar. Eine andere Bezeichnung dafür ist Redoxsystem.

  • Benenne die funktionellen Gruppen.

    Tipps

    Hier siehst du die vollständige Strukturformel der Essigsäure. Bestimmt ist dir die $COOH$-Gruppe aufgefallen, die jede Carbonsäure mindestens einmal enthält. Die funktionelle Gruppe heißt Carboxygruppe.

    Aceton ist das einfachste Keton. Das entscheidende Strukturmerkmal ist die Carbonylgruppe $(C=O)$.

    Hier findest du die Strukturformel von Acetaldehyd (auch Ethanal). Wie der erste Name schon vermuten lässt, finden wir hier eine Aldehydgruppe. Hast du sie auch gefunden?

    Lösung

    Funktionelle Gruppen bestimmen verschiedene Stoffeigenschaften und auch das Reaktionsverhalten der entsprechenden Verbindungen. Verbindungen mit gleichen funktionellen Gruppen werden oft zu Stoffklassen zusammengefasst, eben aufgrund der ähnlichen Eigenschaften.

    Oben findest du vier ausgewählte funktionelle Gruppen, von denen du drei im Video kennengelernt hast.

    • $R-CO-R$: Die Carbonylgruppe ist charakteristisch für Ketone, wie z. B. Aceton.
    • $R-COOH$: Bei Carbonsäuren finden wir typischerweise die Carboxygruppe, die sich aus einer Carbonylgruppe und einer Hydroxygruppe zusammensetzt. Beispiele für Carbonsäuren sind Ameisensäure, Buttersäure oder Essigsäure.
    • $R-OH$: Typisch für Alkohole ist die Hydroxygruppe. Deshalb finden wir sie z. B. bei Methanol oder Ethanol.
    • $R-CO-H$: Die Aldehydgruppe finden wir bei den Aldehyden. Beispiele sind Formaldehyd oder Acetaldehyd

  • Bestimme bei den dargestellten Redoxreaktionen die Oxidations- und Reduktionsmittel.

    Tipps

    Sauerstoff $(O_2)$ selbst ist ein Oxidationsmittel. Im Grunde kann man es sich so merken, dass der Stoff, der $O_2$ abgibt, das Oxidationsmittel ist.

    Schauen wir uns die vereinfachte Summenformel der Zellatmung an:
    $C_6H_{12}O_6~+~6~O_2~\longrightarrow~6~CO_2~+~6~H_2O$.

    Glucose wird zu $CO_2$ oxidiert. $O_2$ wird zu $H_2O$ reduziert. Wenn Glucose oxidiert wird, dann ist es das Reduktionsmittel. Wenn Sauerstoff reduziert wird, ist es das Oxidationsmittel.

    Lösung

    Puh, gar nicht so einfach, hier den Überblick zu behalten. Aber gehen wir die Oxidations- und Reduktionsmittel noch einmal durch.

    Jede Redoxreaktion kann man in die beiden Einzelreaktionen Oxidation und Reduktion aufgliedern. Das machen wir jetzt mit dem 1. Beispiel.
    Redoxreaktion: $2~Al~+~Fe_2O_3~\longrightarrow~Al_2O_3~+~2~Fe$
    Reduktion: $Fe^{3+}~+~6~e^-~\longrightarrow~2~Fe$
    Oxidation: $2~Al~\longrightarrow~2~Al^{3+}~+~6~e^-$

    Wie du siehst, wird der Sauerstoff an dieser Stelle ausgeblendet. Um herauszufinden, ob es sich bei dem vorliegenden Reaktionspartner um ein Reduktionsmittel oder ein Oxidationsmittel handelt, sollte man erstens schauen, ob Sauerstoff im Spiel ist. Wenn dem so ist, dann ist der Stoff das Oxidationsmittel, der den Sauerstoff abgibt (im 1. Beispiel also $Fe_2O_3$). Umgekehrt ist der Stoff, der Sauerstoff aufnimmt das Reduktionsmittel (im 1. Beispiel also $Al$).

    Findet die Reaktion ohne Sauerstoff statt, müssen wir uns der Oxidationszahlen bedienen. Dies möchte ich dir an Beispiel 7 kurz erläutern:
    $Zn~+~2~HCl~\longrightarrow~ZnCl_2~+~H_2$.

    $~~$
    Zuerst ein paar Worte zu Oxidationszahlen (OZ):

    • einzelne Teilchen haben die OZ $\pm 0$ (z. B. $Zn$, $H_2$)
    • Wasserstoffatome haben die OZ $+1$
    • Sauerstoffatome haben die OZ $-2$
    • Metallatome haben in einer Verbindung die OZ ihrer Wertigkeit im Periodensystem $(Zn=+2)$
    Daraus ergeben sich für Beispiel 7 folgende Oxidationszahlen:
    ${}_{\pm 0}~~~~~~~~~~{}_{+1}~{}_{-1}~~~~~~~~~{}_{+2}~~{}_{-1}~~~~~~~~{}_{\pm 0}$
    $Zn~+~2~HCl~\longrightarrow~ZnCl_2~+~H_2$.

    Wird die Oxidationszahl kleiner, handelt es sich um das Oxidationsmittel.
    Wird die Oxidationszahl größer, handelt es sich um das Reduktionsmittel.

    $Zn$ ist also das Reduktionsmittel, da sich die OZ von $\pm 0$ auf $+2$ erhöht.
    $HCl$ ist das Oxidationsmittel, da sich die OZ von $H$ von $+1$ auf $\pm 0$ erniedrigt.

  • Stelle eine Redoxreaktion grafisch dar.

    Tipps

    Die vier Begriffe sind: Oxidation, Reduktion, Oxidationsmittel, Reduktionsmittel.

    Bei einer Reduktion wird in der Regel Sauerstoff abgegeben.

    Die Reaktion von $C$ zu $CO_2$ ist eine Oxidation. Das Oxidationsmittel ist $FeO$.

    Lösung

    Auf der Abbildung kannst du erkennen, dass die Reaktion von $FeO$ zu $Fe$ eine Reduktion darstellt. Das ist gut erkennbar, da hier der Sauerstoff wegfällt (reduziert).

    Die Reaktion von $C$ zu $CO_2$ ist eine Oxidation. Du kannst sehen, dass das Kohlenstoffatom $O_2$ (oxi) erhält.
    Der Stoff, der diese Oxidation ermöglicht, ist das $FeO$. Es ist also das Oxidationsmittel.
    Das Reduktionsmittel ist $C$.

    Die Redoxreaktion kann auch in die beiden Einzelreaktionen zerlegt werden:
    Reduktion: $Fe^{2+}~+~2~e^-~\longrightarrow~Fe$
    Oxidation: $C~\longrightarrow~C^{2+}~+~2~e^-$.

  • Begründe, warum ein Wasserstoff-Ion auch als Proton bezeichnet wird.

    Tipps

    Das Wasserstoff-Atom $(H)$ besitzt, wie du rechts erkennen kannst, ein Proton im Atomkern und ein Elektron.

    Das Proton heißt in der offiziellen chemischen Nomenklatur auch Hydron. Das Symbol von Wasserstoff $(H)$ steht für das Wort hydrogenium.

    Lösung

    Das Wasserstoff-Ion wird auch als Proton bezeichnet. Dies kommt daher, da das Wasserstoffatom nur ein Elektron besitzt. Wird dieses abgegeben, entsteht das Wasserstoff-Ion, es bleibt also theoretisch nur der positiv geladene Atomkern übrig. Dies ist allerdings nur in der Theorie möglich, da freie Atomkerne ganz ohne Elektronen nicht existieren.

    Im chemischen Sinne kann ein Proton neben dem eigentlichen Proton auch bis zu zwei Neutronen enthalten, da die Masse des Kerns für den Protonenbegriff unerheblich ist.

    Also: Wenn du $H^+$ liest, kannst du dazu entweder Wasserstoff-Ion oder Proton sagen.

  • Analysiere den Citratzyklus hinsichtlich einer Oxidationsreaktion.

    Tipps

    Bei einer Reduktion werden Elektronen $(e^-)$ aufgenommen, bei einer Oxidation werden Elektronen abgegeben.

    Schaue dir das Beispiel für eine Redoxreaktion an.

    Bei der Reaktion von $NAD^+$ zu $NADH+H^+$ handelt es sich um eine Reduktion.

    Lösung

    Beginnen wir mit dem Beispiel aus dem Citratzyklus.
    Malat wird zu Oxalacetat oxidiert. Das bedeutet, dass Malat Elektronen abgibt. Dies passiert in Form von zwei Wasserstoffatomen (bzw. $2~e^-$ und $2~H^+$). Sie werden auf das $NAD^+$ übertragen. $NAD^+$ ist also das Oxidationsmittel, da es die Oxidation von Malat zu Oxalacetat ermöglicht. Malat ist dementsprechend das Reduktionsmittel.

    Nun zum zweiten Beispiel, das wir bei alkoholischen Gärungsprozessen finden:
    Ethanal (Acetaldehyd) wird zu Ethanol reduziert. Dies wird ermöglicht durch $NADH+H^+$, welches 2 Wasserstoffatome (bzw. $2~e^-$ und $2~H^+$) abgibt und so die Reduktion ermöglicht. Deshalb ist $NADH+H^+$ das Reduktionsmittel. Ethanal ist das Oxidationsmittel, da es die Oxidation von $NADH+H^+$ zu $NAD^+$ ermöglicht, indem es die beiden Wasserstoffatome aufnimmt.