Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Bioelektrizität in Zellen – Entstehung und Bedeutung

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.3 / 54 Bewertungen
Die Autor*innen
Avatar
Bio-Team
Bioelektrizität in Zellen – Entstehung und Bedeutung
lernst du in der 11. Klasse - 12. Klasse - 13. Klasse

Bioelektrizität in Zellen – Entstehung und Bedeutung Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Bioelektrizität in Zellen – Entstehung und Bedeutung kannst du es wiederholen und üben.
  • Beurteile die Aussagen bezüglich der Ionen.

    Tipps

    Geladene Teilchen können nicht einfach durch die Membran diffundieren.

    Merke dir, dass negativ geladene Ionen Anionen sind.

    Lösung

    Wenn ein Atom oder Molekül einen Elektronenmangel oder -überschuss hat, entsteht ein Ion. Es ist also elektrisch geladen. Bei einem Elektronenüberschuss ist das Ion negativ geladen und wird Anion genannt. Hat es einen Elektronenmangel, ist es positiv geladen und heißt Kation. Da die tierische Membran aus einer Lipiddoppelschicht aufgebaut ist, können keine geladenen Teilchen durch diese hindurch. Die geladenen Ionen brauchen also spezielle Kanäle, um die Membran zu passieren. Da aber auch Ionen verschieden geladen sein können (z. B. positiv oder negativ, einfach oder mehrfach geladen) gibt es Kanäle, die nur die entsprechenden Ionen passieren können.

  • Bestimme den Ablauf der Erregungsleitung an Nervenzellen.

    Tipps

    Der Ionenfluss kommt durch eine Umverteilung der Ladung zustande.

    Lösung

    Die Erregungsleitung an den Nervenzellen ist für alle tierische Zellen wichtig, um Informationen aufzunehmen und weiterzuleiten. Kommt ein elektrischer Impuls an den Sinneszellen oder am Nervenzellkörper an, so öffnen sich die spannungsgesteuerten Ionenkanäle für einen kurzen Augenblick. Die ungleich verteilten Ionen (Ladungsträger) strömen in die Zelle ein und verändern so das Membranpotential. Auf diese Weise wird die Information nur in eine Richtung am Axon weitergeleitet.

  • Definiere die folgenden Begriffe zur Bioelektrizität.

    Tipps

    Damit Spannung entsteht, müssen Ionen ungleichmäßig verteilt sein.

    Lösung

    Strom fließt, wenn die geladenen Teilchen ungleichmäßig verteilt sind. In den tierischen Zellen sind das Anionen und Kationen. Entsteht Spannung an einer Membran, so spricht man von Membranpotential. Dabei trennt die Lipiddoppelschicht der Membran das innere und äußere Milieu. Ein Gleichgewichtspotential entsteht, wenn die Kräfte des Konzentrationsausgleichs und des Ladungsausgleichs gleich groß sind.

  • Bestimme unterschiedliche Arten von Ionenkanälen.

    Tipps

    Die spannungsaktivierten Natriumkanäle sind in allen Nervenzellen zu finden. Durch die Veränderung des Membranpotentials öffnen sie sich, sodass an der Zellmembran der Nervenzelle ein verstärkter Ionenfluss stattfindet.

    Die Klassifizierungen können sich überschneiden. Es gibt Natriumkanäle, die spannungsgesteuert sind, und welche, die es nicht sind.

    Lösung

    Ionenkanäle sind Transmembranproteine in der Zellmembran, die der Zelle ermöglichen, in ständigem Kontakt mit dem extrazellulären Raum zu stehen. Die meisten Ionenkanäle haben einen offenen und einen geschlossenen Zustand. Neben unspezifischen Kanälen, die für mehrere Ionen durchlässig sind, gibt es auch selektive Ionenkanäle, die unterschiedlich klassifiziert werden können.

    Eine häufig verwendete Klassifizierung erfolgt nach dem transportierten Ion des Kanals. So werden Kanäle, die für Natrium passierbar sind, als Natriumkanäle bezeichnet, demnach die für Kalium passierbaren Kaliumkanäle usw. Außerdem kann man die Ionenkanäle auch nach der Art der Steuerung einteilen.

    So gibt es spannungsgesteuerte Ionenkanäle, die in jeder Nervenzelle zu finden sind. Sie öffnen sich durch die Veränderung des Membranpotentials. Wenn ein Reiz auf die Nervenzelle trifft, öffnen sie sich durch die veränderte Spannung und ermöglichen die Erregung der Nervenzelle.

    Liganden-gesteuerte Ionenkanäle sind z. B. an den Synapsen der Nervenzellen zu finden. Diese Kanäle haben Rezeptoren, an die die entsprechenden Botenstoffe binden können. Wenn z. B. Acetylcholin an den Acetylcholin-Rezeptor bindet, öffnet sich der Kanal und wird passierbar.

    Mechanisch gesteuerte Kanäle sind in unseren mechanischen Sinneszellen zu finden. Diese Kanäle werden durch mechanische Spannungen aktiviert. Diese können durch Druck und Vibration ausgelöst werden.

  • Bestimme den Ort der jeweiligen Ionenkonzentrationen.

    Tipps

    Organische Anionen sind zelleigene Strukturen, die meist zu groß für Kanäle sind.

    Faustregel: Kochsalz (NaCl) nehmen wir von außen auf.

    Lösung

    Damit Elektrizität und damit die Aufnahme und Weitergabe von Information in tierischen Zellen funktioniert, müssen die Ionen ungleich verteilt sein. Im Zellinneren befinden sich mehr K⁺-Ionen und organische Anionen⁻. Das sind zelleigene Strukturen (daher innen), die auch geladen sind und daher nicht durch die Membran diffundieren können. Für die meisten Kanäle sind sie zu groß, weshalb sie für die Bioelektrizität keine große Rolle spielen. Außen befinden sich mehr Na⁺- und innen mehr K⁺-Ionen.

  • Bestimme den Aufbau einer Nervenzelle.

    Tipps

    Die Ionenkanäle, durch die die kurzzeitige Änderung des Membranpotentials erfolgen kann, befinden sich im Axon der Nervenzelle.

    Im Soma finden wir den Zellkern der Nervenzelle.

    Die Schwannschen Zellen isolieren das Axon. Die Membran der Nervenzelle liegt nur an den Ranvierschen Schnürringen frei.

    Lösung

    Die Nervenzelle ist das kleinste Bauelement des Nervensystems. Sie besteht aus dem Zellkörper (Soma), den kurzen Fortsätzen (Dendriten) und dem Axon. Durch die kurzen Fortsätze werden Nervenimpulse aufgenommen und über das Axon und über die Synapsen, die sich an den Enden der Fortsätze befinden, zu anderen Nervenzellen oder Muskeln weitergeleitet.

    Das Axon ist für die Entstehung des Impulses von großer Bedeutung, denn an der Zellmembran befinden sich die Ionenkanäle, durch die im Falle einer Erregung der verstärkte Ionenfluss stattfinden kann. Die Axone mancher Nervenzellen sind von der Myelinscheide umgeben, die von den Schwannschen Zellen gebildet wird. In den Zwischenräumen dieser Schwannschen Zellen, also an den Ranvierschen Schnürringen, liegt die Zellmembran des Axons frei.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.156

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.930

Lernvideos

37.078

Übungen

34.333

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden