30 Tage kostenlos testen: Mehr Spaß am Lernen.
30 Tage kostenlos testen

Überzeugen Sie sich von der Qualität unserer Inhalte.

30 Tage kostenlos testen

Nitrierung von Benzol

Das Benzolmolekül stellt einen klassischen Aromaten dar. Das organische Molekül besitzt eine geschlossene Ringstruktur und ist planar. Zwischen den Kohlenstoff-Atomen, die den Ring bilden, wechseln sich Einfach- und Doppelbindungen ab, sie sind also konjugiert. Es sind also sechs $\pi$-Elektronen vorhanden. Diese sind innerhalb des Rings nicht an eine bestimmte Stelle gebunden. Man spricht hier von delokalisierten $\pi$-Elektronen. Daher schreibt man das Molekül auch oft mit einem Kreis in der Mitte, der dieses Elektronensechstett darstellen soll.

benzol.jpg

Aufgrund dieses Elektronensechstetts ist die Elektronendichte innerhalb des Rings relativ hoch. Dies macht den Angriff von Elektrophilen möglich. Elektrophile sind Teilchen, die angezogen werden von negativen Ladungen. Im Beispiel der Nitrierung ist das Elektrophil ein Nitronium-Ion $({NO_2}^+)$. Dieses kann aus einer Mischung von Salpetersäure und Schwefelsäure gewonnen werden. Man nennt dieses Gemisch daher auch Nitriersäure. Bei der Nitrierung handelt es sich um eine elektrophile Substitution. Dabei greift das Nitronium-Ion das Benzolmolekül an. Es bildet sich zuerst ein $\pi$-Komplex. Dabei wechselwirken die $\pi$-Elektronen des Benzols mit dem Elektrophil. Dabei besteht noch keine echte Bindung zwischen den beiden Teilchen. Hier siehst du einen $\pi$-Komplex mit einem Chlor-Elektrophil.

pi-komplex.jpg

Nach diesem Schritt bildet sich ein $\sigma$-Komplex heraus. Dabei hat sich eine kovalente Bindung zum Elektrophil ausgebildet und auch das Wasserstoff-Atom ist noch gebunden.

sigma-komplex.jpg

Als letzter Schritt erfolgt die Abspaltung des Wasserstoffs. Die Substitution des Wasserstoffs durch eine Nitrogruppe ist nun abgeschlossen. Das entstandene Produkt wird als Nitrobenzol bezeichnet.

Friedel-Crafts-Acylierung

Auch die Friedel-Crafts-Acylierung ist eine elektrophile Substitution an einem Aromaten. Bei dieser Reaktion wird ein Acyl-Rest an einen Aromaten substituiert. Ein Acyl-Rest leitet sich von Carbonsäuren und Aldehyden ab. Dabei bleibt die Carbonyl-Gruppe ($C=O$) bestehen, während die Hydroxyl-Gruppe bzw. bei Aldehyden das Wasserstoff-Atom durch einen organischen Rest wie z.B. eine Methyl-Gruppe ersetzt ist. Ein einfacher Acyl-Rest ist z.B. $CH_3-CO-$. Auch aromatische Acyl-Reste sind möglich.

Friedel-Crafts-Acylierung

Als Erstes muss ein Acytyl-Ion erzeugt werden. Dieses besitzt dann eine positive Ladung und kann den Aromaten mit seiner hohen Elektronendichte angreifen. Der Reaktionsmechanismus verläuft wie bei der Nitrierung. Es erfolgt also die Bildung eines $\pi$-Komplexes. Daraus entsteht ein $\sigma$-Komplex und zum Schluss erfolgt die Abspaltung des Protons. Mithilfe dieser Reaktion können gezielt Substituenten an Aromaten angebracht werden. So werden Verbindungen hergestellt, die genau dem gewünschten Verwendungszweck entsprechen.

Zweitsubstitution am Aromaten

Wenn man einen weiteren Substituenten an einem Aromaten anbringen will Zweitsubstitution, ist der bereits vorhanden Substituent wichtig zu berücksichtigen. Je nach Art dieses Substituenten wird der folgende in eine bestimmte Position am Ring dirigiert. Es gibt die ortho- (direkt neben dem Substituenten), meta- (eine Position weiter) und die para-Stellung (genau gegenüber und damit am weitesten entfernt vom Substituenten). Hier siehst du das Beispiel ortho-Nitrotoluol.

ortho.jpg

Man unterscheidet daher Substituenten 1. Ordnung und 2. Ordnung. Die der 1. Ordnung, wie die Methyl-Gruppe, dirigieren weitere Substituneten in die ortho- oder para-Stellung. Substituenten der 2. Ordnung, wie die Nitro-Gruppe, bewirken die Anlagerung eines weiteren Substituenten in der meta-Stellung.