30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Glykolyse – Bedeutung und Bilanz 06:57 min

Textversion des Videos

Transkript Glykolyse – Bedeutung und Bilanz

Hallo! Vor Prüfungen und wenn du dich beim Sport richtig schlapp fühlst, hast du bestimmt schon mal Traubenzucker gegessen. Das gibt neue Energie für Gehirn und Muskeln. Ein anderes Wort für Traubenzucker ist Glucose und es ist in allen Lebensmitteln mit Kohlenhydraten enthalten, zum Beispiel in Honig, Obst, Gemüse, Brot und Süßigkeiten. In diesem Video geht es um die Nutzbarmachung dieser Energie. Der erste Schritt dieser Zellatmung ist die Glykolyse. Du wirst mehr über den genauen Ablauf, die Energiebilanz und Regulation erfahren. Beginnen wir mit dem Ablauf. Zunächst solltest du wissen, dass Glucose eine Hexose ist, also aus sechs Kohlenstoffatomen besteht. Durch Umwandlung, wie Phosphorylierung und Oxidation, wird Energie frei, die in Form von ATP und NADH gespeichert wird. Außerdem entsteht Pyruvat, eine Triose mit drei Kohlenstoffatomen. Hier siehst du das Glucose-Molekül. Das kennst du schon aus dem Chemieunterricht. Als erstes wird es phosphoryliert. Das heißt, eine Phosphatgruppe wird angehangen. Dadurch ist das Molekül in der Zelle gefangen und kann der Glykolyse nicht mehr entkommen. Zugleich wird es aktiviert. Von Nachteil ist, dass für diesen Schritt Energie verbraucht wird, nämlich ein Molekül ATP. Das neu entstandene Glucose-6-phosphat wird zu Fruktose-6-phosphat umgebaut. Wieder unter Energieverbrauch entsteht Fruktose-1,6-bisphosphat durch eine zweite Phosphorylierung. Im vierten Schritt kommt es endlich zur Spaltung in zwei Triosen. Dihydroxyacetonphosphat und Glycerinaldehyd-3-phosphat entstehen. Beide Moleküle besitzen je eine Phosphatgruppe und sind ineinander umwandelbar. Kommen wir zum eigentlichen Energiegewinn. Alles beginnt mit einer Oxidation. Zwei Wasserstoffatome werden auf den Akzeptor NAD+ übertragen. Es entsteht NADH und H und 1,3-Bisphosphoglycerat. Eine Phosphatgruppe wird in der folgenden Reaktion auf ADP übertragen. Das erste ATP wurde gebildet, außerdem 3-Phosphoglycerat. Da die Phosphatgruppe an ein anderes Kohlenstoffatom springt, entsteht 2-Phosphoglycerat. Im vorletzten Schritt wird Wasser abgespalten. Der neue Stoff heißt Phosphoenolpyruvat. Fast am Ende: Zuletzt wird die verbliebene Phosphatgruppe an ADP abgegeben. Ein zweites ATP entsteht und Pyruvat als Endprodukt der Glykolyse. Geschafft. Die Bilanz des Ganzen ist ein bisschen kompliziert. Zunächst einmal muss man verstehen, welche Stoffe entscheidend sind. Das ist zunächst ATP, Adenosintriphosphat. Dieser Stoff ist sehr energiereich und quasi für unseren Körper wie Benzin für ein Auto. Es ist unsere Energiewährung. Zu Beginn haben wir zwei ATP ausgegeben während der Phosphorylierung. Dann kam die Spaltung in Triosen. Pro Triose haben wir zwei ATP gewonnen und jeweils ein NADH. Das macht vier ATP und 2 NADH. Minus die zwei verbrauchten ATP vom Anfang bleiben zwei ATP und zwei NADH. NADH ist ein Reduktionsäquivalent, mit dem später im Verlauf der Atmungskette ATP gewonnen wird. Ein Großteil der Energie steckt aber immer noch im Endprodukt Pyruvat. Die wird im zweiten Schritt der Zellatmung freigesetzt, im Citratzyklus. Natürlich muss so ein Prozess auch reguliert werden. Brauchst du viel Energie, wird viel Energie in deinen Zellen nutzbar gemacht, brauchst du wenig, die Energieproduktion eingeschränkt. Hier siehst du noch einmal die ganze Reaktionskette. Kurz vor der Spaltung der Hexose in zwei Triosen setzt die Regulation an mit dem Enzym Phosphofruktokinase. Dieses Enzym katalysiert die Bildung von Fruktose-1,6-bisphosphat aus Fruktose-6-phosphat. Die Reaktion läuft also schneller ab. Ist viel ATP vorhanden, wird das Enzym gehemmt. Die Reaktion läuft langsamer ab und es wird weniger ATP gebildet. Hat die Zelle hingegen einen großen Energiebedarf, sind vor allem ADP und AMP vorhanden, also Adenosinmonophosphat mit nur einer Phosphatgruppe. Diese aktivieren den Katalysator Phosphofruktokinase. Die Glykolyse läuft schneller ab und in der Zelle wird mehr ATP produziert. Fassen wir noch einmal zusammen: Durch Phosphorylierung wird ein Glucose-Molekül aktiviert und kann die Zellmembran nicht mehr passieren. Unter Verbrauch von zwei ATP, also zweimaliger Phosphorylierung, entsteht Fruktose-1,6-bisphosphat. Die Hexose wird in zwei Triosen gespalten. Alle folgenden Reaktionen finden also zweimal statt. Durch Oxidation wird energiereiches NADH gebildet. In mehreren Schritten entsteht zweimal ATP und schließlich das Endprodukt Pyruvat, das in den Citratzyklus eingeht. Insgesamt werden zwei ATP verbraucht. Vier ATP und zwei Moleküle NADH entstehen. Die Energiegewinnung wird durch das Enzym Phosphofruktokinase reguliert, das durch ATP gehemmt wird und durch ADP und AMP aktiviert. Ich hoffe, du hast viel gelernt. Tschüss!

4 Kommentare
  1. tolles Video. VIELEN DANK :)

    Von Eudoraplus, vor fast 3 Jahren
  2. Ganz im Gegensatz zu Bdeurope, der Angesichts des dermaßen gut erklärten Stoffes, gerne ein bisschen mehr Dankbarkeit zeigen sollte, finde ich deine Stimme wundervoll! Super Video, weiter so! vielen Dank!

    Von Muth95philmon, vor mehr als 4 Jahren
  3. Super erklärt!!

    Von Ingrid1996, vor etwa 5 Jahren
  4. Du hast ne komische Stimme

    Von Bdeurope, vor etwa 5 Jahren

Glykolyse – Bedeutung und Bilanz Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Glykolyse – Bedeutung und Bilanz kannst du es wiederholen und üben.

  • Nenne Lebensmittel, die besonders viel Traubenzucker enthalten.

    Tipps

    Wenn Lebensmittel süß schmecken, enthalten sie in der Regel Glucose, also Traubenzucker.

    Äpfel enthalten viel Fruchtzucker (Fructose), welcher vom Körper in Traubenzucker (Glucose) umgebaut werden kann.

    Lösung

    Traubenzucker bzw. Glucose ist in vielen Lebensmitteln enthalten. Besonders viel Glucose enthalten Honig, Rosinen und Datteln, aber auch Obst, Brot, Nudeln, Reis und Süßigkeiten.
    Alle kohlenhydrathaltigen Lebensmittel enthalten Zucker. Während der Verdauung werden langkettige Kohlenhydrate (Stärke) gespalten. So kann der Körper Kohlenhydrate nutzen.

  • Fasse den grundlegenden Ablauf der Glykolyse zusammen.

    Tipps

    Glucose wird über zwei Zwischenschritte in Fructose-1,6-bisphosphat umgesetzt. Dabei werden 2 Moleküle $ATP$ investiert.

    Im weiteren Verlauf wird Fructose-1,6-bisphosphat gespalten und die Produkte in weiteren Zwischenschritten zu zwei Molekülen Pyruvat umgesetzt.

    Glycerinaldehyd-3-phosphat wird zu 1,3-Bisphosphoglycerat umgesetzt. Da dies zweimal geschieht, werden auch 2 Moleküle $NADH+H^+$ erzeugt.

    Lösung

    Grundlegend wird bei der Glykolyse ein Molekül Glucose zu zwei Molekülen Pyruvat umgesetzt. Dafür werden zwei Moleküle $ATP$ investiert, später aber vier Moleküle $ATP$ und zwei Moleküle $NADH$ erzeugt. Als weiteres Produkt entsteht ein Molekül $H_2O$.

  • Gliedere die Glykolyse hinsichtlich der ablaufenden Zwischenschritte.

    Tipps

    Glucose-6-phosphat wird zu Fructose-6-phosphat umgesetzt.

    Fructose-1,6-bisphosphat wird in Dihydroxyacetonphosphat und Glycerinaldehyd-3-phosphat aufgespalten.

    Bei der Umwandlung von 2-Phosphoglycerat zu Phosphoenolpyruvat wird $H_2O$ abgespalten.

    Lösung

    Hier siehst du noch einmal die Glykolyse mit allen Zwischenschritten.
    Denke daran, dass ab Glycerinaldehyd-3-phosphat alle weiteren Schritte doppelt ablaufen, da Glycerinaldehyd-3-phosphat zweimal gebildet wird (das eine Mal über das Zwischenprodukt Dihydroxyacetonphosphat).

  • Stelle den Ablauf der Glykolyse grafisch dar.

    Tipps

    Bei der Glykolyse werden erst 2 Mol $ATP$ investiert. Bei den nächsten Zwischenschritten werden insgesamt 4 Mol $ATP$ gewonnen.

    Der Ausgangsstoff für die Glykolyse ist Traubenzucker.

    Lösung

    Glucose wird über zwei Zwischenschritte zu Fructose-1,6-bisphosphat umgewandelt. Dabei werden 2 Mol $ATP$ verbraucht. Fructose-1,6-bisphosphat (Hexose) wird im nächsten Schritt in zwei Triosen gespalten: Glycerinaldehyd-3-phosphat und Dihydroxyacetonphosphat, wobei Letzteres im nächsten Schritt ebenfalls zu Glycerinaldehyd-3-phosphat umgebaut wird. Somit laufen alle nachfolgenden Reaktionen doppelt ab.
    Bis zur Bildung von Pyruvat konnte Energie in Form von 4 Mol $ATP$ und 2 Mol $NADH$ gebildet werden, außerdem entstehen 2 Mol $H_2O$.

    Zur Erinnerung: Mol ist die Einheit der Stoffmenge. Bei chemischen Reaktionen dient sie als Mengenangabe.

  • Erkläre die Regulatorfunktion der Phosphofruktokinase.

    Tipps

    Phosphofruktokinase katalysiert die Umwandlung von Fructose-6-phosphat zu Fructose-1,6-bisphosphat.

    Wenn viel ATP vorhanden ist, wird das Enzym Phosphofruktokinase in seiner Aktivität gehemmt. Es wandelt in der gleichen Zeit weniger Moleküle um als vorher.

    Lösung

    Wie du in der Abbildung rechts sehen kannst, katalysiert das Enzym Phosphofruktokinase die Umwandlung von Fructose-6-phosphat zu Fructose-1,6-bisphosphat. Der Katalysator steigert die Geschwindigkeit, mit der diese Umwandlung stattfindet.

    Ist viel ATP vorhanden, wird das Enzym gehemmt. Es wird also weniger Fructose-6-phosphat umgewandelt.

    Ist dagegen wenig ATP vorhanden, dafür aber viel ADP oder AMP, wird die Phosphofruktokinase aktiviert. Es wird wieder mehr Fructose-6-phosphat umgewandelt.

  • Ermittle die Energiebilanz der Glykolyse.

    Tipps

    Die Zellatmung ist in drei Abschnitte gegliedert. Sie beginnt mit der Glykolyse.

    Ein Mol Glucose wird bei der Glykolyse in zwei Mol Pyruvat umgesetzt.

    Bei der Glykolyse werden vier Mol $ATP$ gewonnen, allerdings wird in den ersten Zwischenschritten, bei der Umwandlung von Glucose zu Pyruvat, Energie in Form von 2 Mol $ATP$ investiert. Deshalb werden in der Nettoenergiebilanz 2 Mol $ATP$ angegeben.

    Lösung

    Puh, als LehrerIn hat man es manchmal nicht leicht, wenn es um die Korrektur von Klausuren geht. Schauen wir uns die fünf SchülerInnentexte mal genauer an:

    1. Bei der Glykolyse wird 1 Mol Glucose in 2 Mol Pyruvat umgewandelt (nicht in 1 Mol). Die ca. 38 Mol $ATP$ werden in der gesamten Zellatmung gewonnen – bei der Glykolyse „nur“ 2 Mol.
    2. Die Glykolyse hat mit der Fotosynthese nicht allzu viel zu tun, im Gegenteil: Die Zellatmung ist ja quasi eine gegenteilige Fotosynthese, wenn man sich die Nettobilanzen anschaut. Und Sonnenenergie entsteht natürlich nicht, weder bei der Fotosynthese noch bei der Zellatmung.
    3. Die Glykolyse ist der erste Abschnitt der Zellatmung. Die oxidative Decarboxylierung findet im Anschluss statt. Die Energiebilanz der Glykolyse sieht schon ziemlich gut aus, ein paar Fehler haben sich leider trotzdem eingeschlichen. Die korrekte Energiebilanz siehst du weiter unten.
    4. Wundervoll, hier ist alles richtig!
    5. Dass in der Atmungskette der Hauptanteil von ATP gebildet wird, ist hier eigentlich richtig erkannt worden. Allerdings werden auch in der Glykolyse netto 2 Mol $ATP$ gebildet, dazu auch noch 2 Mol $NADH$.
    Die Gesamtbilanz der Glykolyse kann folgendermaßen zusammengefasst werden:
    $Glucose + 2 ADP + 2 P_i + 2 NAD^+ \longrightarrow 2 Pyruvat + 2 ATP + 2 NADH + 2 H^+ + 2 H_2O$.