30 Tage kostenlos testen

Überzeugen Sie sich von der Qualität unserer Inhalte.

Ether – Synthesen (Expertenwissen)

Bewertung

Gib eine Bewertung ab!

Die Autor/-innen
Avatar
André Otto
Ether – Synthesen (Expertenwissen)
lernst du in der 10. Klasse - 11. Klasse

Beschreibung Ether – Synthesen (Expertenwissen)

In diesem Video werden dir die wichtigsten Verfahren zur Synthese von Ether vorgestellt. Dabei werden die Reaktionsmechanismen in Halbstrukturformeln dargestellt und erklärt. Die wesentlichen Verfahren, die vorgestellt werden, sind die saure Veretherung, die Veretherung von Ethen mit Schwefelsäure und einem Alkohol, die Verteuerung durch Dehydrierung eines Alkohols, die Veretherung von einem Alken durch ein Alkanol sowie die Veretherung mittels der Williamson-Synthse. Am Ende des Videos werden alle Synthesen noch einmal kurz zusammengefasst. Wenn du mehr erfahren willst, dann schau es dir an.

Transkript Ether – Synthesen (Expertenwissen)

Guten Tag und herzlich willkommen, in diesem Video geht es um Ether, ihre Synthesen. Synthesen sind gängige, erprobte Herstellungsformen. Das Video ist vorgesehen für das Gymnasium, den dortigen Leistungskurs, aber auch die Hochschule kann es zum Einstieg benutzen.

Ich möchte euch meine Gliederung vorstellen: Im ersten Teil möchte ich die saure Veretherung in Anwesenheit von konzentrierter Schwefelsäure besprechen. Im zweiten Abschnitt möchte ich euch zeigen, wie man aus Ethen und konzentrierter Schwefelsäure Ether gewinnen kann. Der dritte Teil befasst sich mit der Dehydratisierung von Alkoholen in Anwesenheit von Säuren. Im vierten Teil zeige ich, wie man aus einem Alken und Alkohol in sauberer Umgebung einen Ether erhält. Im fünften Teil werde ich die Williamson-Synthese zur Etherherstellung vorstellen.

  1. Saure Veretherung in Anwesenheit von konzentrierter Schwefelsäure Im ersten Teil reagiert der Alkohol mit konzentrierter Schwefelsäure. Als Beispiel habe ich Ethanol und Schwefelsäure gewählt und die Halbstrukturformel aufgeschrieben. Bei der Reaktion werden die Fragmente H und HO abgelöst. Es kommt zur Veresterung. Es bildet sich ein Alkylsulfat und Wasser entsteht. Das Alkylsulfat ist ein Ester. Der Ester reagiert im zweiten Schritt mit einem zweiten Molekül, Ethanol. Es bildet sich Diethylether und Schwefelsäure wird frei. Der zweite Schritt ist die eigentliche Veretherung dieser Reaktion.

  2. Aus Ethen in Anwesenheit von konzentrierter Schwefelsäure Im ersten Schritt reagiert Ethen mit konzentrierter Schwefelsäure und es bildet sich wieder ein Alkylsulfat. Das Alkylsulfat heißt auch, wie im Beispiel der Reaktion 1, Ethylsulfat. Ethylsulfat reagiert mit einem weiteren Molekül Ethanol. Es bildet sich Diethylether und Schwefelsäure wird frei. Diese Synthese hat große Bedeutung als Industrieverfahren.

  3. Dehydratisierung von Alkoholen Dehydratisierung heißt Abspaltung von Wasser. Im ersten Schritt reagiert der Alkohol, ich habe hier Ethanol genommen, mit einem Wasserstoff-Ion. Das positiv geladene Wasserstoff-Ion lagert sich an die negativ geladenen, nicht bindenden, Elektronenpaare des Ethanols an. Es entsteht ein Oxonium-Ion. Das Oxonium-Ion reagiert mit einem weiteren Molekül Ethanol. Ein Wasserstoffatom des Oxonium-Ions wird gegen den Ethylrest des Ethanols ausgetauscht und es bildet sich ein neues Oxonium-Ion. Gleichzeitig wird ein Wassermolekül freigesetzt. Im abschließenden Schritt spaltet das Oxonium-Ion ein Wasserstoff-Ion ab. Es bildet sich der Ether, Diethylether.

  4. Die Ether-Synthese aus Alken und Alkohol Als Ether habe ich hier ein vierfach methyliertes Ethen genommen. Im ersten Schritt reagiert das Alken mit dem Hydronium-Ion H3O+. Dabei bildet sich ein Carbenium-Ion und Wasser wird frei. Das Carbenium-Ion wird nun von den nicht bindenden Elektronenpaaren eines Moleküls, Ethanol, nukleophil attackiert. Es bildet sich ein Oxonium-Ion. Nach Abspaltung des Wasserstoff-Ions, obere Zeile, ist die Ether-Synthese vollzogen. Zum Schluss möchte ich noch, um ganz korrekt zu sein, die nicht bindenden Elektronenpaare eintragen.

  5. Die Williamson-Synthese Bei der Williamson-Synthese reagiert die chemische Verbindung R-O-M mit der chemischen Verbindung R'-X unter Erwärmung. Es handelt sich hierbei um ein Alkoholat und ein Halogenalkan. M könne Natrium, Kalium, Magnesium oder Silber sein. Bei X handelt es sich um die Halogene Chlor, Brom oder Iod. Bei der Reaktion entsteht ein Ether und ein Salz wird frei, ein Halogenit. Der Mechanismus ist relativ einfach zu verstehen: Das Ion R-O- reagiert mit der Elektronenmangelseite des Teilchens R'-X. Der Elektronenmangel wird hervorgerufen durch die Elektronenanziehung von X. Bei der Reaktion bildet sich der gewünschte Ether. Das negativ geladene Ion heißt Alkoholat-Ion. Neben dem Ether entsteht das Halogenid-Ion X-.

Die grundlegenden Ergebnisse des Videos möchte ich in einer Übersicht zusammenfassen. Ether kann man mit verschiedenen chemischen Methoden synthetisieren. Das erste Verfahren ist die Reaktion des Alkohols mit konzentrierter Schwefelsäure. Ich habe hier Ethanol als Beispiel genommen. Die zweite Möglichkeit der Herstellung von Ether ist die Reaktion eines Alkens mit Schwefelsäure und anschließender Bearbeitung mit einem Alkohol. Die dritte Möglichkeit einer Ethersynthese ist die Dehydratisierung eines Alkohols in Anwesenheit einer starken Säure. Das vierte Verfahren zur Herstellung von Ethern ist die Anlagerung eines Alkohols an eine Doppelbindung in Anwesenheit einer starken Säure. Die fünfte Möglichkeit einer Ether-Synthese ist die Williamson-Synthese. Das ist die Reaktion eines Alkoholats mit einem Chloralkan. Bei der zweiten Synthese schreibe ich noch den Alkohol dazu und dann stimmt das Bild auch visuell.

Ich wünsche euch alles Gute und viel Erfolg. Auf Wiedersehen.

Ether – Synthesen (Expertenwissen) Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Ether – Synthesen (Expertenwissen) kannst du es wiederholen und üben.
  • Formuliere die einzelnen Schritte einer sauren Veretherung.

    Tipps

    Es soll Diethylether entstehen. Daraus kann man ablesen, welcher Alkanol verwendet werden muss.

    Bei der Säure handelt es sich um eine starke Säure, die man auch in reiner Form abfüllen kann.

    Das Zwischenprodukt ist ein Ester, das vom Namen her an ein Salz der verwendeten Säure erinnert.

    Lösung

    Im ersten Schritt der Reaktion reagiert der Alkohol mit der Schwefelsäure. Die Hydroxygruppe reagiert mit der Säure und wird durch sie verestert. Dabei wird Wasser frei.

    • Ethanol + Schwefelsäure $\longrightarrow$ Ethylsulfat + Wasser
    • $CH_3-CH_2-OH+HO-SO_2-OH$ $\longrightarrow CH_3-CH_2-O-SO_2-OH+H-OH$
    Anschließend reagiert das entstandene Ethylsulfat mit einem weiteren Molekül des Alkohols. Dabei bildet sich der Ether und die Schwefelsäure wird wieder frei.
    • Ethylsulfat + Ethanol $\longrightarrow$ Diethylether + Schwefelsäure
    • $CH_3-CH_2-O-SO_2-OH + CH_3-CH_2-OH$ $\longrightarrow CH_3-CH_2-O-CH_2-CH_3 + H_2SO_4$
    In der Bruttogleichung tauchen Säure und Ethylsulfat nicht auf, da sie sowohl auf der Eduktseite als auch auf der Produktseite stehen und damit gekürzt werden können.

  • Bestimme die Produkte aus der Williamson-Synthese zu folgenden Beispielen.

    Tipps

    Der Ether wird durch die beiden Reste benannt, aus denen der Ether aufgebaut ist. Anschließlich folgt ether.

    Die Reste im Namen werden nach dem Alphabet angeordnet.

    Das Alkalimetall-Halogenid ergibt sich aus dem Alkalimetall und dem Halogen, die als Bestandteile in den Edukten vorliegen.

    Lösung

    Bei der allgemeinen Reaktionsgleichung der Williamson-Synthese reagieren:

    Alkali-Metall-Alkoholat + Alkyl-Halogenid $\longrightarrow$ Ether + Alkali-Metall-Halogenid

    • $R^1-OM + R^2-X \longrightarrow R^1-O- R^2 + MX$

    Aus den Resten der beiden Edukte setzt sich der Name des Ethers zusammen. Sie werden in alphabetischer Reihenfolge angeordnet. Dann folgt ether. Das Alkalimetall-Halogenid ergibt sich aus dem Alkalimetall und dem Halogen, die in den Edukten vorliegen.

    Natriumisopropylat + Isopropylbromid $\rightarrow$ Diisopropylether + Natriumbromid

    1-Iodbutan + Kaliumpropylat $\rightarrow$ Butylpropylether + Kaliumiodid + Kaliumiodid

    Hexylchlorid + Lithiumpenthylat $\rightarrow$ Hexylpentylether + Lithiumchlorid

    Kaliummethylat + 1-Iodoctan $\rightarrow$ Methyloctylether + Kaliumiodid

    Natriumethylat + Propyliodid $\rightarrow$ Ethylpropylether + Natriumiodid

    Ethyliodid + Natriumbutylat $\rightarrow$ Butylethylether + Natriumiodid

  • Erkenne wichtige Ausgangsstoffe für die Ether-Synthese.

    Tipps

    Die Ether-Gruppe -O- ist in vielen Verbindungen vorgeformt.

    Bei der Synthese benötigt man außer dem Alkoxy-Rest-OR noch die andere Seite.

    Zu viel an der funktionellen Gruppe wirkt störend.

    Phenole und Alkohole gehören streng genommen zu verschiedenen Verbindungsklassen. Bei der Ether-Synthese jedoch verhalten sie sich ähnlich.

    Lösung

    Alkohole und Phenole sind beide Ausgangsstoffe für die Ether-Synthese.

    • Das betrifft sowohl den einfachsten Vertreter ${C_6H_5OH}$ als auch natürlich mehrwertige Phenole wie Brenzkatechin, Resorzin oder Hydrochinon.
    • Bei den Alkoholen sind alle unverzweigten Alkanole wie Methanol, Ethanol, Propanol, usw. geeignet. Auch die sekundären Alkohole liefern Ether.
    • Aus tertiären Alkoholen gewinnt man generell keine Ether. Hier bedient man sich indirekter Verfahren. Aber in der Liste von Vorschlägen gibt es keinen tertiären Alkohol.
    • Der Ether, sei er nun symmetrisch aufgebaut oder nicht, entsteht immer asymmetrisch, da man das Sauerstoff-Atom nur zusammen mit einer Gruppe hinzufügen kann. Spezielles Einfügen atomaren Sauerstoffes geht nicht!
    Achtung: Niemals leichtfertig den Begriff asymmetrische Synthese verwenden! Es handelt sich hier um eine besondere semantische Zuordnung, die ein konkretes Syntheseziel beinhaltet. Aus diesem Grund sind Halogenalkane unter Beteiligung von Chlor, Brom oder Iod geeignete Ausgangsverbindungen. Fluor ist ungeeignet. Hat man ein Halogenalkan als einen Reaktionspartner, benötigt man eine geeignete Zweitverbindung. Aus der Struktur der Ether kann man erkennen, dass es sich dabei um das Reaktionsprodukt eines Alkohols mit einem Alkalimetall, zum Beispiel um ${CH_3CH_2}^- Na^+$, handeln muss.

  • Berechne die Anzahl verschiedener Ether, die sich ergeben, wenn du alle möglichen Alkohole mit 1-4 C-Atomen kombinierst.

    Tipps

    Überlege dir, wie viel verschiedene Alkohole $C_1$ bis $C_4$ möglich sind.

    Berücksichtige unterschiedliche Stellungen der Hydroxygruppe.

    Denk auch an mögliche Verzweigungen der Kohlenstoffkette.

    Berechne die Zahl möglicher Reaktionsprodukte, indem du aus verschieden Resten $R^1-$ und $R^2-$ unterschiedliche Ether $R^1-O-R^2$ aufbaust.

    Lösung

    Nehmen wir an, dass $n$ verschiedene Alkohole vorliegen. Kombiniert man links und rechts, ergibt das $n^2$ verschiedene Ether. Das bedeutet, alle Zahlen, die keine Quadratzahlen sind, sind keine Lösungen. Nun muss die Zahl aller gesättigten Alkohole mit einem, zwei, drei oder vier Kohlenstoffatomen bestimmt werden.

    Wir zählen: Methanol plus Ethanol sind zwei Alkohole. Dazu kommen Propan-1-ol und Propan-2-ol. Nun sind es bereits vier Alkohole. Vom Butanol gibt es vier Alkohole: den primären Alkohol Butan-1-ol, den sekundären Alkohol Butan-2-ol (beide unverzweigt), den sekundären verzweigten Alkohol 2-Methylpropan-1-ol und den tertiären Alkohol 2-Methylpropan-2-ol (tert-Butanol).

    Das ergibt zusammen acht Alkohole.

    Ein Problem bleibt: tert-Butanol liefert keinen Ether.

    Somit bleiben sieben etherbildende Alkohole. Folglich können 7 mal 7 = 49 Ether hergestellt werden.

  • Benenne die Edukte zur Synthese von Diethylether.

    Tipps

    Versuche die Stoffklasse anhand der charakteristischen Formelmerkmale zu erkennen.

    Alkohole besitzen die Hydroxygruppe $-OH$.

    Alkene besitzen eine Doppelbindung.

    Lösung

    Es gibt verschiedene Synthesewege für Ether. Um sie verstehen zu können, ist es wichtig die beteiligten Edukte zu erkennen. Zum einen können Ether aus Alkoholen und Schwefelsäure hergestellt werden. Alkohole erkennst du an der $-OH$-Gruppe. Sie können aber auch durch eine Reaktion von Alkenen mit Schwefelsäure entstehen. Alkene haben eine Doppelbindung im Molekül. Außerdem können Alkoholmoleküle mit Wasserstoffionen protoniert werden.

    Bei der Williamson-Synthese reagieren ein Alkoholat und ein Halogenalkan. Halogenalkane erkennst du am enthaltenen Halogen (F, Cl, Br, I) und Alkoholate sind die Salze der Alkohole. Da ist also das Wasserstoffatom der $-OH$-Gruppe durch ein Metallkation $-OM$ ersetzt.

  • Erarbeite Faktoren, die eine saure Ethersynthese begünstigen.

    Tipps

    Als Katalysator braucht man starke und beständige Säuren.

    Schwefelsäure ist stabil und existiert in reiner Form. Salzsäure gibt es nur in Lösung.

    Der Entzug des Reaktionsproduktes steigert stets den Umsatz.

    Lösung

    1.$~$Mit einem tertiären Alkohol wie tert-Butanol sollte man es gar nicht versuchen, denn es entsteht kein Ether, sondern Isobutylen $(CH_3)_2C=CH_2$.

    • Ja, die Synthese gelingt tatsächlich nicht. Grund dafür ist die relativ hohe Stabilität des Isobutylens. Hervorgerufen wird sie durch die Hyperkonjugation der Methyl-Gruppen mit der Doppelbindung.
    2.$~$Für die Veretherung ist jede Säure geeignet, denn jede Säure spaltet Protonen ab.
    • Nein, zu schwache, zu instabile oder zu flüchtige Säuren sind ungeeignet.
    3.$~$Saure Ionenaustauscherharze sind für die Veretherung ungeeignet, da die Säure flüchtig sein muss.
    • Nein, gerade die geringe Flüchtigkeit der sauren Ionenaustauschharze führt zu ihrer guten Eignung als saurer Katalysator. Ihre Wirtschaftlichkeit ist ein schöner Nebeneffekt.
    4.$~$Konzentrierte Schwefelsäure ist ein geeigneter Katalysator. Günstig ist zusätzlich, dass die Verbindung stark hygroskopisch ist.
    • Ja.
    5.$~$Salzsäure katalysiert die Veretherung besser als Schwefelsäure, weil sie die stärkere Säure ist.
    • Nein, zwar ist Salzsäure (im wässrigen Medium!) tatsächlich eine stärkere Säure als Schwefelsäure. Als reine Verbindung als Chlorwasserstoff ist sie jedoch flüchtig und als Katalysator ungeeignet. Konzentrierte Salzsäure hilft auch nicht, denn das viele Wasser stört. Da Wasser bei der Veretherung entsteht, drückt es das chemische Gleichgewicht in Richtung der Edukte.
    6.$~$Bei der Ethersynthese kann man den Ether abdestillieren. Das ist günstig, denn es bewirkt seine Nachbildung.
    • Ja.
    7.$~$Aus zwei verschiedenen primären Alkoholen erhält man unter geeigneten Synthesebedingungen drei verschiedene Ether.
    • Ja, wir zählen: Ein Ether entsteht aus einem Alkohol, der zweite aus dem anderen Akohol. Der dritte Ether schließlich ist die unsymmetrische Verbindung aus beiden Alkoholen.
    8.$~$Der Start der sauren Veretherung erfordert die Anwesenheit von Wasser.
    • Nein, wenn etwas bei der sauren Veretherung sehr stört, dann ist es die Anwesenheit von Wasser.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
Im Vollzugang erhältst du:

10.841

Lernvideos

44.342

Übungen

38.963

Arbeitsblätter

24h

Hilfe von Lehrer/
-innen

running yeti

In allen Fächern und Klassenstufen.

Von Expert/-innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden