30 Tage kostenlos testen

Überzeugen Sie sich von der Qualität unserer Inhalte.

Der Aufbau von Atomen – Elektronenschalen

Bewertung

Ø 4.4 / 47 Bewertungen

Die Autor*innen
Avatar
Team Realfilm
Der Aufbau von Atomen – Elektronenschalen
lernst du in der 7. Klasse - 8. Klasse - 9. Klasse - 10. Klasse - 11. Klasse - 12. Klasse - 13. Klasse

Beschreibung Der Aufbau von Atomen – Elektronenschalen

Inhalt

Elektronenschalen – Chemie

Aus dem Chemieunterricht und eurem Alltag kennt ihr Beispiele für Reaktionen, die eher langsam ablaufen (z. B. Oxidation von Eisenverbindungen = Rosten), bei anderen wiederum reagieren Elemente sehr schnell, zum Teil explosionsartig, miteinander (z. B. Oxidation von Wasserstoff = Knallgasreaktion). Doch woran liegt das?

Warum sind manche Elemente reaktionsfreudiger als andere?

Für die Reaktivität eines Elements sind vor allem die äußersten Elektronen ausschlaggebend, die sogenannten Valenzelektronen. Bevor wir uns genauer anschauen, wo diese sich befinden, werfen wir zunächst einen Blick auf den gesamten Aufbau des Atoms.

Elektronenschalenmodell – Entwicklung

Seit Daltons Atommodell wissen wir, dass Elemente aus Atomen bestehen. Diese wiederum sind aus noch kleineren Teilchen, den sogenannten Elementarteilchen, aufgebaut. Für das Modell der Elektronenschalen genügt es, uns die drei bekanntesten Teilchen anzuschauen: Protonen (positiv geladen), Neutronen (neutral) und Elektronen (negativ geladen). Die Anzahl von Protonen und Elektronen in einem Atom ist gleich, sodass das Atom nach außen weder eine Überzahl von positiven noch negativen Ladungen aufweist. Es ist elektrisch neutral. Rutherford erkannte bereits 1911, dass diese beiden Teilchenarten nicht zufällig im gesamten Atom verteilt sind. Die Protonen (und Neutronen) befinden sich im Atomkern, dieser ist also positiv geladen. Die Elektronen befinden sich außen in der Atomhülle, diese ist negativ geladen.

Elektronenschalenmodell nach Bohr

Zwei Jahre später (1913) entwickelte der dänische Physiker Niels Bohr für das Wasserstoffatom ein Modell, welches aussagt, dass die Elektronen nicht beliebig in der Atomhülle verteilt sind, sondern sich auf festen Kreisbahnen um den Atomkern bewegen. Einfach erklärt, kann man sich dies vorstellen wie die Planeten, die um unsere Sonne kreisen. Die Elektronen bleiben dabei jedoch nicht in einer Ebene, sondern bewegen sich in definierten Abständen rund um den Kern in ihren jeweiligen Schalen.

Elektronenschalen – Definition und Aufbau

Diese diskreten Bahnen entsprechen also den erlaubten Aufenthaltsorten der Elektronen und werden Elektronenschalen genannt. Gäbe es diese nicht, würden aufgrund der Anziehung zwischen positiv geladenem Atomkern und negativ geladenen Elektronen Letztere irgendwann in den Kern stürzen. Der Größenunterschied zwischen Atomkern und Atomhülle ist übrigens enorm. Protonen sind viel schwerer als Elektronen und so befindet sich über 99 % der Masse des Atoms im Kern. Im Gegensatz dazu beträgt die Ausdehnung des Kerns mit $\ce{1/20000}$ bis $\ce{1/150000}$ nur ein Bruchteil der Ausdehnung der Atomhülle. Würde man den Atomkern auf die Ausmaße eines Stecknadelkopfes vergrößern (etwa 2 Millimeter Durchmesser), hätte das gesamte Atom eine Größe von 200 Metern.

Elektronenschalen – Bezeichnung und Besetzung

Die Elektronenschalen werden nun ausgehend vom Kern mit Buchstaben bezeichnet. Man hatte zuvor bereits die Absorptionslinien des Sonnenlichts mit $\ce{A}$, $\ce{B}$ und folgend benannt. Da zu diesem Zeitpunkt nicht bekannt war, wie groß die Anzahl jener Absorptionslinien tatsächlich ist, begann man die Benennung der Elektronenschalen einfach in der Mitte des Alphabets, um noch genügend Platz zu lassen. Wir beginnen also auf der innersten Schale mit $\ce{K}$ und gehen weiter nach außen in alphabetischer Reihenfolge. Die maximale Besetzung der Schalen mit Elektronen erfolgt dabei nach der Formel $\ce{2n^{2}}$, wobei $\ce{n}$ der Schalennummer entspricht. Für die $\ce{K}$-Schale gibt es also höchstens zwei Elektronen, die $\ce{L}$-Schale ist mit acht Elektronen vollständig besetzt. Die maximale Elektronenzahl für die $\ce{M}$-Schale beträgt $\text{18}$. Grundsätzlich werden die Schalen von innen nach außen bis zu ihrer maximalen Befüllung besetzt. Dies gilt streng jedoch nur für die $\ce{K}$- und die $\ce{L}$-Schale. Danach werden auch bereits vor der vollständigen Befüllung einer weiter innen liegenden Schale äußere Schalen besetzt. Dies hat jedoch keinen Einfluss auf die Reaktionsfreudigkeit eines Elements. Dafür genügt es, sich die Besetzung der äußersten Schale anzuschauen.

Elektronenschalen – Reaktivität und Edelgaskonfiguration

Um nun zu verstehen, warum einige Elemente reaktiver sind als andere, hilft uns ein Blick auf die sogenannten Edelgase wie z. B. Argon und Neon. Diese befinden sich in der 8. Hauptgruppe des Periodensystems und sind besonders reaktionsträge. Die äußersten Elektronenschalen der Edelgase sind voll (Helium) bzw. mit jeweils acht Elektronen besetzt und genau dies ist der Grund für ihre außerordentliche Stabilität und somit Trägheit, mit anderen Elementen zu reagieren. Um diesen Zustand der Stabilität zu erreichen, sind nun auch die anderen Elemente bestrebt, ihre äußerste Schale voll bzw. mit acht Elektronen zu besetzen, also eine Edelgaskonfiguration einzustellen.

Elektronenschalen – Beispiel

Am Beispiel von Natriumchlorid (Kochsalz) lässt sich dies anschaulich erklären. Schau dir dazu auch die Abbildung an.

Elektronenschalen Besetzung am Beispiel Natrium und Chlor

Natrium ($\ce{Na}$) besitzt $\text{11}$ Elektronen mit folgender Besetzung:
$\ce{K}$-Schale: $\ce{2e-}$
$\ce{L}$-Schale: $\ce{8e-}$
$\ce{M}$-Schale: $\ce{1e-}$
Der einfachste Weg, um einen stabilen Zustand zu erreichen, ist also die Abgabe des einzelnen Elektrons der $\ce{M}$-Schale, wobei Natrium zum einfach positiv geladenen Ion wird.
$\ce{Na -> Na+ + e-}$

Chlor ($\ce{Cl}$) hingegen besitzt $\text{17}$ Elektronen in folgender Besetzung:
$\ce{K}$-Schale: $\ce{2e-}$
$\ce{L}$-Schale: $\ce{8e-}$
$\ce{M}$-Schale: $\ce{7e-}$
Chlor erreicht also am einfachsten Edelgaskonfiguration, indem es durch die Aufnahme eines Elektrons in die $\ce{M}$-Schale diese auf acht auffüllt. Dies geschieht dann nach folgender Reaktion:
$\ce{Cl + e- -> Cl-}$

Chlor wird durch die Aufnahme eines Elektrons zum negativ geladenen Ion. Eine bekannte Ionenverbindung des Chlors ist das Kochsalz, auch Natriumchlorid ($\ce{NaCl}$), und bildet sich entsprechend $\ce{Na+ + Cl- -> NaCl}$.

Elektronenschalenmodell – Grenzen

Das bohrsche Elektronenschalenmodell wurde später durch das Modell der Atomorbitale erweitert. Diese Erweiterung benötigen wir beispielsweise, um die räumliche Gestalt von Molekülen zu verstehen. Für die Betrachtung von chemischen Reaktionen ist jedoch das vereinfachte Elektronenschalenmodell und dabei vor allem die Besetzung der äußersten Schale entscheidend und ausreichend.

Dieses Video

Wir alle und unsere gesamte Umwelt bestehen aus ihnen – den Atomen. Doch wie genau sehen die eigentlich aus und wie kann es sein, dass verschiedene Elemente unterschiedlich mit anderen reagieren? Der Grund ist der Aufbau der Atome, genauer gesagt der Aufbau der Atomhülle. In ihr befinden sich die Elektronen. Das sind winzig kleine, negativ geladene Teilchen, die auf Schalen rund um den Atomkern angeordnet sind. Die Elemente unterscheiden sich in der Anzahl der Elektronen. Die Zahl der Elektronen in der äußersten Schale hat einen großen Einfluss auf das Reaktionsverhalten des Elements.
Wie immer findest du zu dem Thema Aufbau von Atomen interaktive Übungsaufgaben und ein Arbeitsblatt.

Transkript Der Aufbau von Atomen – Elektronenschalen

Warum zeigt das Element Kalium eine starke chemische Reaktion während das Element Gold über Jahrtausende unverändert bleiben kann? Der Schlüssel zur Reaktionsfähigkeit eines Elements liegt in der Anzahl und der Anordnung seiner Elektronen. In allen Atomen bewegen sich Elektronen in relativ großer Entfernung um einen positiv geladenen Atomkern. Entscheidend sind die diskreten Zustände der Elektronen, die als Elektronenschalen bezeichnet werden. Wenn dieser Fußball ein Atomkern wäre, dann lägen selbst die nächstgelegenen Elektronen weit außerhalb des Stadions. Im verkleinerten Maßstab werden die Elektronenschalen hier als Ringe dargestellt. Jede Schale kann nur eine bestimmte Anzahl von Elektronen aufnehmen. In der ersten Schale sind höchstens zwei Elektronen vorhanden, egal ob es sich um Kalium- oder Goldatome handelt. Die zweite Schale kann bis zu 8 Elektronen aufnehmen. Hat ein Atom mehr Elektronen, kann auch die dritte Schale mit bis zu 18 Elektronen aufgefüllt werden. Je weiter entfernt sich die Elektronenschalen vom Atomkern befinden, desto mehr Elektronen können sie aufnehmen. Die innersten Schalen werden immer zuerst aufgefüllt. Zum Beispiel hat das Natriumatom immer 11 Elektronen, von denen sich 2 in der ersten und 8 in der zweiten Schale befinden. Das elfte Elektron ist ein einzelnes Außenelektron. Ein Fluoratom hat insgesamt 9 Elektronen, davon 7 in der äußeren Schale. Die Anzahl der Elektronen in der äußeren Schale der Atome eines Elements ist verantwortlich für sein chemisches Reaktionvermögen. Um möglichst stabil zu sein, sind Atome bestrebt, die äußere Elektronenschale aufzufüllen. Dies gelingt ihnen durch chemische Reaktion mit anderen Atomen. Ein Kaliumatom wird sein einzelnes Außenelektron durch eine chemische Reaktion an ein anderes Atom abgeben, um so den stabilen Zustand einer aufgefüllten Elektronenschale zu erreichen. Dagegen gehen die Edelgase, wie Neon und Argon, keine chemischen Verbindungen ein, weil ihre äußeren Elektronenschalen bereits vollständig gefüllt sind. Die Elektronenzahl in der äußeren Schale ihrer Atome bestimmt, warum einige Elemente nicht miteinander reagieren, andere Kombinationen dagegen hochexplosiv sind.

4 Kommentare

4 Kommentare
  1. sehrschönesVideo

    Von Magnus Wiedemann08, vor 8 Monaten
  2. SORRY ABER MEINE LEHRERIN HAT ES BESSER ERKLÄRT

    Von Rotorschlee, vor 12 Monaten
  3. Trotz der kürze des Videos hat mir das Video Mega gut gefallen und mir auch die Informationen geben die ich brauchte

    Von Ricky1012, vor mehr als 2 Jahren
  4. Ok

    Von Carsten S., vor mehr als 2 Jahren

Der Aufbau von Atomen – Elektronenschalen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Der Aufbau von Atomen – Elektronenschalen kannst du es wiederholen und üben.
  • Gib an, wie viele Elektronen die Atome besitzen.

    Tipps

    Man besetzt die Schalen immer von innen nach außen mit Elektronen.

    Die Schalen werden alphabetisch von innen nach außen mit Buchstaben gekennzeichnet. Begonnen wird mit K.

    K, L, M, N, O, P

    Lösung

    Die Atomschalen stellen konkrete Energieniveaus für Elektronen dar. Je weiter die Schalen vom Kern entfernt sind, desto mehr Energie besitzen die Elektronen und desto mehr Platz gibt es für weitere Elektronen. Daher wird immer von innen nach außen aufgefüllt.

    Die maximale Anzahl von Elektronen lässt sich mit der Formel: $2\cdot n^2$ bestimmen, wobei n die Nummer der Periode ist.

    $\begin{array}{c|c|c|c|c|c|c} \text{Schale}&\text{K}&\text{L}&\text{M}&\text{N}&\text{O}&\text{P}\\ \hline \text{Periode}&1&2&3&4&5&6\\ \hline \text{Elektronen}&2&8&18&32&50&128 \end{array}$

    Natrium besitzt 11 Elektronen und Fluor besitzt 9 Elektronen von innen nach außen aufgefüllt verteilen sich die Elektronen so.

    $\begin{array}{c|c|c} \text{Schale}&\text{K}&\text{L}&\text{M}\\ \hline \text{Natrium}&2&8&1\\ \hline \text{Fluor}&2&7&0 \end{array}$

  • Erkläre die unterschiedliche Reaktivität von Natrium und Neon.

    Tipps

    Natrium (Na) befindet sich in der 2. Periode in der 1. Hauptgruppe.

    Neon (Ne) befindet sich in der 2. Periode in der 8. Hauptgruppe.

    Lösung

    Ein Atom, dessen Elektronenkonfiguration der eines Edelgases entspricht, ist besonders stabil, da seine Elektronen sehr günstig angeordnet sind. In der Edelgaskonfiguration sind gerade alle begonnenen Schalen vollständig gefüllt.

    Neon besitzt als Edelgas die Edelgaskonfiguration bereits, daher hat es kein Bestreben, ein Elektron abzugeben oder aufzunehmen. Es reagiert nicht. Daher wird für Neon auch keine Elektronegativität angegeben.

    Bei Natrium ist dies anders, es besitzt genau ein Elektron zu viel für eine Edelgaskonfiguration. Da dieser Zustand relativ leicht zu erreichen ist, hat es ein gewaltiges Bestreben sein einzelnes Elektron abzugeben. Daher besitzt es eine sehr kleine Elektronegativität.

  • Berechne die Anzahl der Elektronen, die maximal auf eine Schale passen.

    Tipps

    $n$ ist die Nummer der Schale.

    $z$ ist die Anzahl der Elektronen in der entsprechenden Schale.

    Die K-Schale ist die innerste (erste) Schale des Bohr'schen Atommodell, da man die ersten Großbuchstaben des Alphabetes bereits anderweitig verwendet hatte.

    Lösung

    Wie die Häute einer Zwiebel besitzen die äußeren Schichten ein größeres Volumen als die innersten Schichten. Daher bieten die äußeren Elektronenschalen auch mehr Platz für Elektronen als die inneren Schalen.

    Die maximale Zahl an Elektronen, die theoretisch auf eine Schale passen würde, nimmt dabei stark zu.

    $\begin{array}{c|c|c} \text{Schale}&\text{Periode}&\text{Anzahl Elektronen}\\ \hline \text{K}&1&2\\ \hline \text{L}&2&8\\ \hline \text{M}&3&18\\ \hline \text{N}&4&32\\ \hline \text{O}&5&50\\ \hline \text{P}&6&72\\ \hline \text{Q}&7&98\\ \end{array}$

  • Verteile die Elektronen von Kalium und Neon auf die Schalen.

    Tipps

    Man besetzt die Schalen immer von innen nach außen mit Elektronen.

    Die Schalen werden alphabetisch von innen nach außen mit Buchstaben gekennzeichnet. Begonnen wird mit K.

    K, L, M, N, O, P

    Lösung

    Die Atomschalen stellen konkrete Energieniveaus für Elektronen dar. Je weiter die Schalen vom Kern entfernt sind, desto mehr Energie besitzen die Elektronen und desto mehr Platz gibt es für weitere Elektronen. Daher wird immer von innen nach außen aufgefüllt.

    Neon besitzt 10 Elektronen und Kalium besitzt 19 Elektronen.

    Bei Neon ist die Verteilung der Elektronen noch verhältnismäßig einfach. Es befinden sich die maximal 2 Elektronen in der K-Schale und die maximal 8 Elektronen in de L-Schale, damit sind diese beiden Schalen vollständig gefüllt und das Element ist nicht reaktiv.

    Schwerer ist es beim Kalium. Hier muss man wissen, dass innerhalb der Hauptgruppe zunächst nur die Schalen auf jeweils 8 Elektronen aufgefüllt werden. Erst mit Beginn der Nebengruppe werden die inneren Schalen weiter aufgefüllt. So hat Kalium im Vergleich zum Krypton diese Elektronenverteilung:

    $\begin{array}{c|c|c|c|c} \text{Schale}&\text{Ordnungszahl}&\text{K}&\text{L}&\text{M}&\text{N}\\ \hline \text{Kalium}&19&2&8&8&1\\ \hline \text{Krypton}&36&2&8&18&8 \end{array}$

  • Entscheide, ob die Elemente reaktiv sind oder nicht.

    Tipps

    Elemente mit einer Edelgaskonfiguration sind nicht reaktiv.

    Elemente, denen nur noch die Abgabe weniger oder die Aufnahme weniger Elektronen zur Edelgaskonfiguration fehlt, sind sehr reaktiv.

    Eine Edelgaskonfiguration beschreibt einen Zustand, in dem nur vollständig gefüllte Schalen vorliegen.

    Lösung

    Jedes Element versucht durch Bindung, oder durch Elektronen auf oder Abnahme eine Edelgaskonfiguration zu erreichen. Je weniger Aufwand dafür nötig ist, diesen Zustand zu erreichen, desto reaktiver ist das Element. Ist dieser Zustand erreicht, ist das Element nicht mehr reaktiv.

    Die Edelgase Neon und Argon besitzen bereits eine Edelgaskonfiguration, daher sind sie nicht reaktiv. Gold hat einen relativ weiten Weg um eine Edelgaskonfiguration zu erreichen. Es muss ganze 3 Elektronen abgeben. Zudem ist es durch andere Effekte sehr stabil.

    Fluor, Kalium und Natrium müssen dagegen nur ein Elektron aufnehmen bzw. abgeben, um eine Edelgaskonfiguration zu erreichen, daher sind sie sehr reaktiv. Fluor ist das Element, welches das größte Bestreben hat, Elektronen aufzunehmen.

  • Berechne, wieviele Schalen benötigt werden, um die Elektronenkonfiguration der Elemente (1-118) darzustellen.

    Tipps

    Die Schalen werden alphabetisch von innen nach außen mit Buchstaben gekennzeichnet. Begonnen wird mit K.

    K, L, M, N, O, P

    Die Ordnungszahl gibt auch an, wieviele Elektronen ein Element besitzt.

    Hier siehst du die unterschiedlichen Blöcke:

    • in hellgrün: Wasserstoff, Helium und die 1. und 2. Hauptgruppe,
    • in rot die 3. bis 8.Hauptgruppe,
    • in gelb die Nebengruppen und
    • schließlich in blau die Lanthanoide und Actinoide.
    Lösung

    Die Blöcke s, p, d, f sind eine sehr vereinfachte Darstellung des Orbitalmodells innerhalb des PSE. Die Maximalzahlen von Elektronen auf den Bohr'schen Schalen stimmen leider nur theoretisch, da die Maximalzahl durch die energetische Verteilung innerhalb der Orbitale genauer beschrieben werden kann.

    So werden zur derzeitigen Darstellung aller Elektronenkonfigurationen 7 Schalen benötigt.

    Theoretisch wäre noch weitere Schale denkbar und auch ein weiterer Block.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

10.816

Lernvideos

44.233

Übungen

38.866

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden