Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Radioaktiver Zerfall und Zerfallsgeschwindigkeit

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bereit für eine echte Prüfung?

Das Radioaktiver Zerfall Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten

Lerntext zum Thema Radioaktiver Zerfall und Zerfallsgeschwindigkeit

Radioaktiver Zerfall

Als radioaktiven Zerfall bezeichnet man den Prozess, bei dem instabile Atomkerne in stabilere Zustände übergehen und dabei Energie und/oder Teilchen freisetzen. Der genaue Zeitpunkt, an dem ein einzelner Atomkern zerfällt, ist nicht vorhersagbar. Allerdings lassen sich Aussagen über den zeitlichen Verlauf des Zerfalls für die Gesamtheit der Kerne treffen.

Radioaktive Zerfallsgeschwindigkeit

Um den Verlauf des radioaktiven Zerfalls zu beschreiben, verwendet man die Zerfallsgesetze. Hier nehmen wir an, dass wir ein radioaktives Präparat haben, in dem man folgende Größen definieren kann:

  • Zu einem (beliebigen) Startzeitpunkt $ t_0 $ gibt es $ N_0 $ nicht zerfallene Atomkerne.
  • Die Anzahl der noch nicht zerfallenen Atomkerne zu einem späteren Zeitpunkt $t$ bezeichnen wir mit $N(t)$.

Die momentane Änderungsrate des Bestands ist die Ableitung des Bestands nach der Zeit. Man berechnet diese durch:
$ \frac{dN}{dt}=-\lambda \cdot N(t)$

Die Proportionalitätskonstante $\lambda$ bezeichnet man als Zerfallskonstante. Sie hat die Einheit $\frac{1}{\pu{s}}$. Die Zerfallskonstante gibt an, welcher Anteil an noch nicht zerfallenen Atomkernen durchschnittlich in der nächsten Sekunde zerfallen wird. Ihr Wert hängt ausschließlich von dem betreffenden Nuklid ab.

Halbwertszeit

Die Halbwertszeit $T_{\frac{1}{2}}$ ist die Zeitspanne, in der die Hälfte aller Atomkerne zerfallen ist. Daher gilt für die Anzahl der noch nicht zerfallenen Atomkerne zum Zeitpunkt der Halbwertszeit:

$ N(T_{\frac{1}{2}})=\frac{1}{2} \cdot N_0$

Zwischen der Zerfallskonstante $\lambda$ und der Halbwertszeit besteht der Zusammenhang: $\lambda = \frac{\ln(2)}{T_{\frac{1}{2}}}$

Wie die Zerfallskonstante hängt die Halbwertszeit allein vom Nuklid der radioaktiven Substanz ab. Sie sind statistische Größen und daher unabhängig von äußeren Bedingungen wie zum Beispiel Temperatur oder Druck.

Gesetz des radioaktiven Zerfalls

Das Gesetz des radioaktiven Zerfalls leitet man mithilfe der momentanen Änderungsrate des Zerfalls und der Anfangsbedingung $N(0)=N_0$ her. Die Lösung der Differenzialgleichung beschreibt die Anzahl der nicht zerfallenen Atomkerne zum Zeitpunkt $t$.

$N(t)=N_0 \cdot e^{- \lambda \cdot t}$

4834Zerfallsgeschwindigkeit

Der Bestand der nicht zerfallenen Kerne $N$ sinkt also exponentiell mit der Zeit.
Da die Anzahl der Atomkerne und die Masse des radioaktiven Präparats über die molare Masse in Beziehung stehen, kann man das Zerfallsgesetz auch für die Masse $m$ des radioaktiven Präparats aufstellen.

$m(t)=m_0 \cdot e^{- \lambda \cdot t}$

Aktivität eines radioaktiven Präparats

Die Aktivität A beschreibt die Anzahl der momentan in dem Präparat stattfindenden radioaktiven Zerfälle. Man berechnet die Aktivität als die negative momentane Änderungsrate:

$A=-\frac{dN}{dt}$

Aus dieser Beziehung kann man das aktivitätsbezogene Zerfallsgesetz herleiten.

$A(t)=-(- \lambda \cdot N(t))= \lambda \cdot N_0 \cdot e^{- \lambda \cdot t}=A_0 \cdot e^{- \lambda \cdot t}$

$A_0$ ist die Aktivität des radioaktiven Präparats zu einem beliebigen Startzeitpunkt. Die Einheit der Aktivität ist Becquerel ($\pu{Bq}$). Eine Aktivität von $\pu{1 Bq}$ entspricht einem radioaktiven Zerfall pro Sekunde.

Beispiel – Berechnung der Halbwertszeit

In diesem Beispiel betrachten wir die Aktivität einer strahlenden Substanz. Ihre Aktivität sinkt innerhalb von $\pu{7 h}$ von $4,2 \cdot 10^{6} \pu{ Bq}$ auf $3,7 \cdot 10^{6} \pu{ Bq}$. Wie groß ist die Halbwertszeit?
Die Aufgabenstellung gibt uns folgende Werte:

  • $A_{0}= 4,2 \cdot 10^{6} \pu{ Bq}$
  • $A(t)= 3,7 \cdot 10^{6} \pu{ Bq}$
  • $t=\pu{7 h}$

Gesucht ist laut Aufgabenstellung die Halbwertszeit. Die Formel für die Berechnung der Halbwertszeit lautet $T_{\frac{1}{2}}=\frac{\ln(2)}{\lambda}$.
Aus der Aufgabenstellung können wir $\lambda$ nicht einfach herauslesen. Es bietet sich an, das aktivitätsbezogene Zerfallsgesetz zu verwenden. Wir haben die Werte für $A(t)$, $A_0$ und $t$ gegeben und können somit $\lambda$ berechnen. Zunächst müssen wir das aktivitätsbezogene Zerfallsgesetz umstellen, sodass wir $\lambda$ auf einer Seite der Gleichung haben.

$\lambda = \frac{1}{t} \cdot \ln \frac{A_0}{A(t)}$

Nun setzen wir die bekannten Werte für $A(t)$, $A_0$ und $t$ in diese Gleichung ein. Um die richtige Einheit für $\lambda$ zu erhalten, rechnen wir Stunden in Sekunden um.

$\pu{7 h} \hat{=} \pu{25 200 s}$

$\lambda = \frac{1}{\pu{25 200 s}} \cdot \ln \frac{4,2 \cdot 10^{6} \pu{ Bq}}{3,7 \cdot 10^{6} \pu{ Bq}}=5,03 \cdot 10^{-6} \cdot \pu{s}^{-1}$

Nun haben wir $\lambda$ berechnet und können diesen Wert in die Formel für die Halbwertszeit einsetzen.

$T_{\frac{1}{2}}=\frac{\ln(2)}{\lambda}=\frac{0,693}{5,03 \cdot 10^{-6} \cdot \pu{s}^{-1}}=1,38 \cdot 10^{5} \pu{s}$

Die Halbwertszeit der Substanz beträgt also $1,38 \cdot 10^{5}$ Sekunden. Das entspricht etwa $38,3$ Stunden.

Radioaktiver Zerfall und Zerfallsgeschwindigkeit – Zusammenfassung

  • Radioaktiver Zerfall ist der Prozess, bei dem die instabilen Atomkerne einer strahlenden Substanz in einen stabilen Zustand übergehen. Dabei verlieren sie Energie und/oder Teilchen.
  • Die Zerfallsgesetze beschreiben den Verlauf des radioaktiven Zerfalls anhand der Zerfallskonstante $\lambda$. Sie gibt an, wie viele Atomkerne durchschnittlich pro Sekunde zerfallen.
  • Das Gesetz des radioaktiven Zerfalls beschreibt den exponentiellen Abfall der Zerfallsgeschwindigkeit. Es kann auf die Anzahl der nicht zerfallenen Atomkerne, auf die Masse und die Aktivität der radioaktiven Substanz bezogen werden.
    $N(t)=N_0 \cdot e^{- \lambda \cdot t}$
    $m(t)=m_0 \cdot e^{- \lambda \cdot t}$
    $A(t)=A_0 \cdot e^{- \lambda \cdot t}$
  • Die Aktivität $A$ beschreibt die Anzahl der momentan stattfindenden radioaktiven Zerfälle und wird als $A=-\frac{dN}{dt}$ berechnet. Die Einheit der Aktivität ist Becquerel ($\pu{Bq}$).
  • Als Halbwertszeit $T{\frac{1}{2}}$ bezeichnet man die Zeitspanne, in der die Hälfte der Atomkerne in einer bestimmten Menge eines radioaktiven Elements zerfällt. Sie kann durch $T_{\frac{1}{2}}=\frac{\ln(2)}{\lambda}$ berechnet werden.

Häufig gestellte Fragen zum Thema Radioaktiver Zerfall und Zerfallsgeschwindigkeit

Was ist radioaktiver Zerfall?
Wie kann man die Geschwindigkeit des radioaktiven Zerfalls beschreiben?
Wie lauten die Zerfallsgesetze?
Was ist die Aktivität eines radioaktiven Präparats?
Was ist die Halbwertszeit?
Wie berechnet man die Halbwertszeit?
Teste dein Wissen zum Thema Radioaktiver Zerfall!

1.215.161 Schülerinnen und Schüler haben bereits unsere Übungen absolviert. Direktes Feedback, klare Fortschritte: Finde jetzt heraus, wo du stehst!

Vorschaubild einer Übung
Bewertung

Ø 3.0 / 1 Bewertungen
Die Autor*innen
Avatar
sofatutor Team
Radioaktiver Zerfall und Zerfallsgeschwindigkeit
lernst du in der 10. Klasse - 11. Klasse - 12. Klasse - 13. Klasse
30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.431

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.947

Lernvideos

37.087

Übungen

34.333

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden