Reaktionen zweiter und dritter Ordnung
in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Reaktionen zweiter und dritter Ordnung Übung
-
Definiere folgende Begriffe der Reaktionskinetik.
TippsDie Tangente dient zur Beschreibung der Reaktionsgeschwindigkeit.
LösungUm eine Reaktion kinetisch zu beschreiben, werden Größen wie z.B. die Reaktionsgeschwindigkeit, Reaktionsordnung, Molekularität und Geschwindigkeitskonstante benötigt.
Wenn die Reaktion von den Edukten zu den Produkten in einem Schritt stattfindet, nennt man diese Reaktion Elementarreaktion. Parallelreaktionen, Kettenreaktionen oder Gleichgewichte setzen sich damit aus mindestens zwei Elementarreaktionen zusammen. Handelt es sich um eine Elementarreaktion, so gilt stets die Annahme, dass die Molekularität der Reaktionsordnung entspricht (n = m). Die Reaktionsordnung n ist die Summe der Exponenten der Konzentration aus dem Geschwindigkeitsgesetz.
- $\sum_{i = 1}^x{\alpha}_i = n$
Die Reaktionsgeschwindigkeit v beschreibt die zeitabhängige Änderung der Konzentration. Sie erhält oft ein negatives Vorzeichen, da die Konzentration der Edukte abnimmt (<0).
- $v = - \frac{dc_i}{dt}$
-
Bestimme das Geschwindigkeitsgesetz für folgende Elementarreaktion dritter Ordnung.
TippsLösungBei aufgeführter Reaktion handelt es sich um eine Reaktion dritter Ordnung, die nur von der Konzentration an Wasserstoffatomen abhängt. Damit bildet sie den „einfachsten" Fall:
- $(1) v = k \cdot c^3$.
- $(2) v = - \frac{dc}{2 \cdot dt}$.
- Gleichsetzen von Gleichung (1) und (2)
- Variablentrennung (Separation der Variablen bedeutet, dass auf beiden Seiten der Gleichung zwei verschiedene Größen zusammengefasst werden.)
- Integration in den Grenzen: Start: $c = c_0;~t= 0$ und Ende: $c = c;~t = t$
- Umformung, sodass nur noch die Konzentration auf einer Seite der Gleichung steht.
- $k \cdot c^3 = - \frac{dc}{2 \cdot dt}$
- $\frac{dc}{c^3} = -2k \cdot dt$
- $\int\limits_{c_0}^{c} \frac{1}{c^3}dc = -2k \int \limits_{0}^{t}dt$ = $- \frac{1}{2 \cdot c^2} \mathop{\big|}\limits_{c_0}^c = - 2k \cdot t \mathop{\big|}\limits_0^t$ = $\frac{1}{c^2} - \frac{1}{{c_0}^2} = 4k~\cdot~t$
- $\frac{1}{c^2} = \frac{1}{{c_0}^2} + 4k~\cdot~t$
-
Bestimme die Reaktionsordnung aus dem Geschwindigkeitsgesetz.
TippsDie Teilreaktionsordnung ist der Exponent über der Konzentration.
Die Reaktionsordnung ist die Summe über alle Teilordnungen.
LösungDie Reaktionsordnung ist eine Summe von Teilreaktionsordnungen. Den Exponenten ${\alpha}_i$ bezeichnet man als Teilreaktionsordnung einer Komponente. An eine Reaktion dritter Ordnung ist lediglich die Bedingung gestellt, dass die Summe über alle Exponenten drei ergeben muss $\sum_{i = 1}^x {\alpha}_i = n$ (= Reaktionsordnung). Dazu existiert eine Vielfalt an Möglichkeiten:
$\begin{array}{c|c} \text{Gleichung} & \text{Ordnung} \\ \hline v = k \cdot c^3 & n = 3 \\ \hline v = k \cdot {[A]}^2 \cdot {[B]} & n = 2+1 \\ \hline v = k \cdot {[A]} \cdot {[B]} \cdot {[C]} & n = 1 + 1 + 1 \\ \hline v = k \cdot {[A]}^{0,5} \cdot {[B]}^{1,5} \cdot {[C]} & n = 0,5 + 1,5 + 1 \\ \end{array}$
-
Leite das Geschwindigkeitsgesetz für folgende Elementarreaktion her.
TippsStelle die beiden Geschwindigkeitsgesetze auf und setze sie gleich. Trenne die Variablen! Integriere in den Grenzen: $\mathop{\big|}\limits_0^x$ und $\mathop{\big|}\limits_0^t$.
LösungUm das Geschwindigkeitsgesetz zu ermitteln, werden immer folgende Schritte durchgeführt:
- Geschwindigkeitsgesetze aufstellen und gleichsetzen.
- Variablentrennung.
- Integration in den Grenzen.
1.) $v = k \cdot {[NO]}^2 \cdot {[O_2]} = \frac{dx}{dt}$
Nach Einsetzen der Konzentrationen gilt: $\frac{dx}{dt} = k \cdot {(a-2x)}^2 \cdot (b-x)$.
2.) $\frac{1}{{(a - 2x)}^2 \cdot (b - x)}dx = k \cdot dt = \frac{1}{4{(b - x)}^3}dx$
Aus der Reaktionsgleichung lässt sich leicht erkennen, dass für die Stoffmengenbilanz gilt: $n(NO) = 2 \cdot n(O_2)$, damit gilt: $a = 2 \cdot b$:
- $Z = {(a - 2x)}^2 \cdot (b - x) = {(2b - 2x)}^2 \cdot (b - x)$
- $Z = (4~b^2 - 8~bx + 4~x^2) \cdot (b -x)$
- $Z = 4~b^3 - 8~b^2x +4~bx^2 - 4~b^2x + 8~bx^2 - 4~x^3$
- Nach Ordnen und Zusammenfassen der Terme ergibt sich: $- 4~x^3 + 12~bx^2 - 12~b^2x + 4~b^3 = 4{(b - x)}^3$.
- $\frac{1}{{(b - x)}^2} - \frac{1}{b^2} = 8~k \cdot t$
- $\frac{1}{{[O_2]}^2} - \frac{1}{{[O_2]_0}^2} = 8~k \cdot t$.
-
Erkläre, warum es viele verschiedene kinetische Gleichungen für eine Reaktion dritter Ordnung gibt.
Tippsn ... Reaktionsordnung
Den Exponenten ${\alpha}_1$ bezeichnet man als Teilreaktionsordnung bezogen auf A.
LösungDie Reaktionsordnung ist eine Summe von Teilreaktionsordnungen. Den Exponenten ${\alpha}_i$ bezeichnet man als Teilreaktionsordnung einer Komponente. An eine Reaktion dritter Ordnung ist lediglich die Bedingung gestellt, dass die Summe über alle Exponenten drei ergeben muss $\sum_{i = 1}^x {\alpha}_i = n$ (= Reaktionsordnung). Dazu existiert eine Vielfalt an Möglichkeiten:
$\begin{array}{c|c} \text{Gleichung} & \text{Ordnung} \\ \hline v = k \cdot c^3 & n = 3 \\ \hline v = k \cdot {[A]}^2 \cdot {[B]} & n = 2+1 \\ \hline v = k \cdot {[A]} \cdot {[B]} \cdot {[C]} & n = 1 + 1 + 1 \\ \hline v = k \cdot {[A]}^{0,5} \cdot {[B]}^{1,5} \cdot {[C]} & n = 0,5 + 1,5 + 1 \\ \end{array}$
-
Bestimme mit dem allgemeinen Geschwindigkeitsgesetz für eine Reaktion dritter Ordnung die Halbwertszeit für eine Reaktion dritter Ordnung.
TippsDie Halbwertszeit ($t_{1/2}$) ist die Zeit, in der nur noch die Hälfte der Eduktmoleküle vorliegt.
Annahmen
LösungDie Halbwertszeit charakterisiert den Zeitraum, in dem die Konzentration des Eduktes auf die Hälfte abnimmt ($c_A = \frac{{c_A}^0}{2}$).
Um aus einer gegebenen Geschwindigkeitsgleichung die Halbwertszeit zu ermitteln, muss $t = t_{1/2}$ gesetzt werden und für die Konzentration $[A] = \frac{[A]_0}{2}$ eingesetzt werden (s. Formel). Durch geeignetes Umstellen und Differenzbildung erlangt man die Halbwertszeit:
- $k \cdot t_{1/2} = \frac{4}{2 \cdot {{[A]}_0}^2} - \frac{1}{2 \cdot {{[A]}_0}^2} \rightarrow t_{1/2} = \frac{1}{k} \cdot \frac{3}{2 \cdot {{[A]}_0}^2}$.
9.360
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.212
Lernvideos
38.688
Übungen
33.496
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Chemie
- Periodensystem
- Ammoniak Verwendung
- Entropie
- Salzsäure Steckbrief
- Kupfer
- Stickstoff
- Glucose Und Fructose
- Salpetersäure
- Redoxreaktion
- Schwefelsäure
- Natronlauge
- Graphit
- Legierungen
- Dipol
- Molare Masse, Stoffmenge
- Sauerstoff
- Elektrolyse
- Bor
- Alkane
- Verbrennung Alkane
- Chlor
- Elektronegativität
- Tenside
- Toluol, Toluol Herstellung
- Wasserstoffbrückenbindung
- Fraktionierte Destillation Von Erdöl
- Carbonsäure
- Ester
- Harnstoff, Kohlensäure
- Reaktionsgleichung Aufstellen
- Redoxreaktion Übungen
- Stärke und Cellulose Chemie
- Süßwasser und Salzwasser
- Katalysator
- Ether
- Primärer Alkohol, Sekundärer Alkohol, Tertiärer Alkohol
- Van-der-Waals-Kräfte
- Oktettregel
- Kohlenstoffdioxid, Kohlenstoffmonoxid, Oxide
- Alfred Nobel
- Wassermolekül
- Ionenbindung
- Phosphor
- Saccharose Und Maltose
- Aldehyde
- Kohlenwasserstoff
- Kovalente Bindung
- Wasserhärte
- Peptidbindung
- Fermentation