Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

EPA-Modell – räumliche Struktur in Molekülen

Erfahre in diesem Artikel, wie das Elektronenpaar-Abstoßungs-Modell (EPA) die räumliche Anordnung von Molekülen erklären kann. Lerne die Regeln kennen und sieh dir Beispiele für Methan, Ammoniak und mehr an! Interessiert? Das und vieles mehr findest du im folgenden Text.

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.3 / 89 Bewertungen
Die Autor*innen
Avatar
Chemie-Team
EPA-Modell – räumliche Struktur in Molekülen
lernst du in der 11. Klasse - 12. Klasse - 13. Klasse

EPA-Modell – räumliche Struktur in Molekülen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video EPA-Modell – räumliche Struktur in Molekülen kannst du es wiederholen und üben.
  • Erkläre, wie die Geometrie in Molekülen bestimmt wird.

    Tipps

    Die Abkürzung EPA bedeutet Elektronenpaar-Abstoßungs-Modell

    Lösung

    Im EPA-Modell wird davon ausgegangen, dass sich die Substituenten mit größtmöglichen Abstand um ein Molekül anordnen, da sich die Elektronenpaare der Bindungen gegenseitig abstoßen. Daraus resultieren dann die entsprechenden Molekülgeometrien. Es werden dabei allerdings nicht nur die bindenenden Elektronenpaare berücksichtigt, sondern auch die freien Elektronenpaare. Diese benötigen sogar ein bisschen mehr Platz und beeinflussen somit auch die entstehende Molekülgeometrie.

  • Gib die Bindungswinkel zu folgenden Verbindungen an.

    Tipps

    Freie Elektronenpaare benötigen mehr Platz als gebundene Substituenten.

    Lösung

    Bei der Bestimmung der Molekülgeometrie werden immer alle Elektronenpaare am zentralen Atom berücksichtigt. Im Methanmolekül befinden sich vier bindende Elektronenpaare am Kohlenstoff, bei Ammoniak sind es drei bindende und ein freies Elektronenpaar und im Wassermolekül sind es zwei bindende und zwei freie Elektronenpaare. In allen drei Molekülen sollten also Tetraederwinkel zu erwarten sein, da sich die vier Elektronenpaare mit möglichst großem Abstand zueinander anordnen. Tatsächlich sind aber nur im Methanmolekül Tetraederwinkel von $109{,}5^\circ$ zu finden. Im Ammoniakmolekül ist der Winkel kleiner und liegt bei $107^\circ$ und im Wassermolekül liegt der Bindungswinkel sogar nur bei $104^\circ$. Ursache dafür ist, dass die freien Elektronenpaare mehr Platz benötigen als die Bindungselektronenpaare. Da im Wassermolekül sogar zwei freie Elektronenpaare am Sauerstoff sind, benötigen sie noch mehr Platz, weshalb der Winkel zwischen den Wasserstoffatomen noch kleiner wird. Im Kohlenstoffdioxid sind zum Sauerstoff Doppelbindungen ausgebildet. Hier befinden sich zwar auch vier bindende Elektronenpaare am Kohlenstoff, aber nur zwei Substituten. Die Geometrie des Moleküls ist daher linear und der Winkel beträgt $180^\circ$.

  • Bestimme die Verbindung, die folgende Geometrie hat.

    Tipps

    Für eine trigonal-pyramidale Geometrie werden drei Substituenten am zentralen Atom benötigt.

    Lösung

    Abgebildet siehst du eine Molekülgeometrie mit drei Substituenten am zentralen Atom. Laut EPA-Modell würden sich drei Substituenten, wenn sie sich so weit wie möglich entfernt voneinander anordnen, trigonal planar anordnen. Da hier eine pyramidale Geometrie vorliegt, muss sich zusätzlich am zentralen Atom noch ein freies Elektronenpaar befinden. Schauen wir uns nun die gegebenen Beispiele an: $\ce{HCl}$ und $\ce{CH4}$ haben beide keine drei Substituenten. Bleiben noch $\ce{BF3}$ und $\ce{PCl3}$. Bor steht in der dritten Hauptgruppe und hat damit drei Außenelektronen. In der Verbindung geht also jedes Außenelektron eine Bindung mit je einem Fluoratom ein. Phosphor dagegen steht in der fünften Hauptgruppe und hat somit fünf Außenelektronen. In $\ce{PCl3}$ gehen nun drei dieser Außenelektronen eine Bindung zu je einem Chloratom ein. Damit bleibt ein freies Elektronenpaar am Phosphor ungebunden. Die Geometrie von $\ce{BF3}$ ist deshalb trigonal planar, weil kein freies Elektronenpaar am Bor ist und im $\ce{PCl3}$ ist die Geometrie trigonal-pyramidal, weil ein freies Elektronenpaar am Phosphor ist.

  • Gib die Geometrie zu folgenden Verbindungen an.

    Tipps

    Zähle die Elektronenpaare am zentralen Atom.

    Tetra- bedeutet 4. Hexa- bedeutet 6.

    Lösung

    Das EPA-Modell geht davon aus, dass sich die Elektronenpaare um ein Atom immer mit größtmöglichen Abstand anordnen, da sie sich abstoßen. Dabei ist es egal, ob es sich um freie Elektronenpaare oder um Bindungselektronenpaare handelt.

    Im Tertrachlorsilan $\ce{SiCl4}$ befinden sich vier Bindungselektronenpaare am Silicium. Die vier Paare ordnen sich also mit größtmöglichen Abstand an, sodass auch die Chloratome im größtmöglichen Abstand angeordnet sind. Es entsteht so eine tetraedrische Geometrie. Auch im Ammoniumion $\ce{NH4^+}$ entsteht diese Geometrie. Da sich die Elektronenpaare abstoßen, ist für die Geometrie irrelevant, welche Substituenten gebunden sind. Also auch, wenn wie im Chloroform $\ce{CHCl3}$ ein Wasserstoffatom und drei Chloratome gebunden sind, ergibt sich eine tetraedrische Geometrie. Allerdings weichen bei sehr unterschiedlich großen Substituenten die Winkel etwas vom idealen Tetraederwinkel ab.

    Bei sechs Elektronenpaaren entsteht ein Oktaeder. Sind auch sechs Substituenten gebunden, ist das Molekül also oktaedrisch, wie im Fall von Hexafluorophosphat $\ce{PF6^-}$ und Schwefelhexafluorid $\ce{SF6}$.

    Allerdings befinden sich nicht immer auch genauso viele Elektronenpaare am zentralen Atom wie Substituenten. Im Oxoniumion $\ce{H3O^+}$ befinden sich vier Elektronenpaare am Sauerstoff. Drei davon binden an die Wasserstoffatome und ein Elektronenpaar ist frei. Dieses freie Elektronenpaar wird bei der Geometriebestimmung auch berücksichtigt. Es ergibt sich also eine tetraedrische Geometrie durch die Elektronenpaare. Da aber nur drei Substituenten am Sauerstoff gebunden sind (das freie Elektronenpaar als Substituent also nicht sichtbar ist), hat das Molekül eine trigonal-pyramidale Geometrie.

  • Nenne die Verwendung des EPA-Modells.

    Tipps

    Was wird durch die Abstoßung der Elektronenpaare an einem zentralen Atom in einem Molekül beeinflusst?

    Lösung

    Das Elektronenpaar-Abstoßungs-Modell, kurz EPA-Modell wird verwendet, um damit die Molekülgeometrie zu bestimmen. Es wird davon ausgegangen, dass sich Elektronenpaare abstoßen und sich somit weitmöglichst voneinander anordnen. Auf dieser Grundlage lassen sich die Molekülgeometrien vorhersagen.

  • Bestimme die Geometrie zu folgenden Verbindungen.

    Tipps

    Zähle die Elektronenpaare am zentralen Atom.

    Lösung

    Als erstes bestimmst du die Elektronenpaare am zentralen Atom. Germanium steht in der vierten Hauptgruppe und so gehen seine vier Außenelektronen alle je eine Bindung zu einem Bromatom ein. Die vier Substituenten sind somit mit größtmöglichem Abstand, also tetraedrisch um das Germanium in $\ce{GeBr4}$, angeordnet.

    Im Bortriflourid $\ce{BF3}$ befinden sich drei Flouratome am Bor. Bor steht in der dritten Hauptgruppe, sodass wieder alle Außenelektronen gebunden sind. Es entsteht somit eine Geometrie, in der die Fluoratome mit größtmöglichem Abstand angeordnet sind, also eine trigonal planare Geometrie.

    Im $\ce{CO2}$ befinden sich zwei Sauerstoffatome am Kohlenstoff und vier Elektronenpaare. Da zwischen Sauerstoff und Kohlenstoff aber Doppelbindungen ausgebildet sind, befinden sich keine freien Elektronenpaare am Kohlenstoff. Die Geometrie ist daher also linear.

    Im Schwefeldioxid $\ce{SO2}$ befinden sich auch zwei Sauerstoffatome am Schwefel. Da Schwefel aber in der sechsten Hauptgruppe steht und Kohlenstoff in der vierten, befindet sich in $\ce{SO2}$ ein zusätzliches Elektronenpaar, welches frei bleibt. Dieses Elektronenpaar sorgt dann für eine trigonal planare Geometrie. Da das freie Elektronenpaar im Molekül aber nicht sichtbar ist, ist die Molekülgeometrie gewinkelt.