Textversion des Videos

Transkript Glykolipide und Glykoproteine

Guten Tag und herzlich willkommen. Dieses Video heißt Glykolipide und Glykoproteine. Als Vorkenntnisse solltet ihr solides Wissen über Monosaccharide, Lipide und Proteine mitbringen. Ihr solltet klare Vorstellungen darüber haben, was Amine, Alkohole und Amide. Außerdem solltet ihr frei und sicher mit den Haworth-Formeln und der Sesselform-Schreibweise umgehen können. Ich versuche euch in diesem Video, Grundvorstellungen über Glykolipide und Glykoproteine zu vermitteln. Der Film wurde in 3 Abschnitte unterteilt:

  1. Glykolipide
  2. Glykoproteine
  3. Zusammenfassung

  4. Glykolipide Bei Glykolipiden handelt es sich um zuckerhaltige Lipide: Man findet sie im Gehirn oder im Nervengewebe. Die Abbildung des Nervengewebes wurde freundlicherweise von Alexandra Amonacid E. zur Verfügung gestellt. Glykolipide und Glykoproteine sind Bestandteil der Plasmamembran. In die Struktur der Glykolipide geht auf alle Fälle ein bestimmter Alkohol ein. Er verfügt wie jeder Alkohol über eine Hydroxygruppe, außerdem besitzt er eine Aminogruppe. Er hat eine 2. Hydroxygruppe, er besitzt eine Doppelbindung und eine lange Alkylgruppe, die ihn zum Lipid macht. Dieser Alkoholbaustein heißt Sphingosin. Ich kennzeichne die Strukturelemente: Amin durch  die Aminogruppe, NH2, ein Alkohol, bedingt durch die 2te Hydroxygruppe OH, die Doppelbindung mit dem Substituenten in Transposition (ein E-Alken). Die lange Alkylgruppe, die den Alkohol erst zum Lipid macht. Sphingosin wird acyliert. Die Acylierung erfolgt an der Aminogruppe NH2. Der Substituent R besteht aus 16 bis 24 Kohlenstoffatomen. Das entstandene Amid bezeichnet man als Ceramid. Ceramid kann mit einem Monosaccharid verknüpft werden, zum Beispiel mit der D-Galactose. Das Reaktionsprodukt besitzt eine ß-glykosidische Bindung, man nennt es Cerebrosid. Der Zuckerrest wird als ß-D-Galactopyranosyl bezeichnet. Außerdem treffen wir Glykolipide als Ganglioside an. Diese spielen eine wichtige Rolle im Nervensystem. Wir wollen uns anschauen wie so ein Gangliosid aufgebaut ist. Der erste Baustein ist N-Acetylgalactosamine. Dieser ist verbunden mit einem Molekül Galactose. Die glykosidische Bindung ist ß-1,4. An das Galactose- schließt sich ein Glykosemolekül an. Es ist mit dem Galactose-Molekül über die glykosidische Verbindung ß-1,4 verknüpft. Das N-Acetylgalactosamin-Molekül ist mit einem weiteren Molekül Galactose verbunden. Die glykosidische Verbindung zwischen beiden Bausteinen ist ß-1,3. Das Galactose-Molekül oben in der Mitte ist mit einem weiteren Molekül verknüpft, das ist ein Molekül der Sialinsäure. Die glykosidische Verbindung ist ß-2,3. NANA ist eine mögliche Abkürzung für Sialinsäure. Das dargestellte Gangliosid gehört zu den Sphingolipiden. Sein Bestandteil ist der Alkohol Sphingosin. Dieser ist, wie bereits gesagt, ein Baustein des Ceramids. Zwischen dem Glukose-Molekül und dem Ceramid-Molekül besteht eine ß-glykosidische Verbindung.

  5. Glykoproteine Glykoproteine sind wichtiger Bestandteil der Zellmembran, auch Plasmamembran genannt. Zur Verdeutlichung wollen wir die Lage eines Glykoproteins in der Zellmembran noch einmal graphisch hervorheben. Die Begrenzungen der Zellmembran sind orange-gelb gekennzeichnet. Darin befindet sich das, mit hellblauer Farbe gekennzeichnete, Protein. Unten soll die Innenzelle der Zelle sein, oben die äußere Begrenzung. Die am Protein sitzenden Oligosaccharid-Moleküle zeigen nach außen. Somit haben wir die Oligosaccharide eines Glykoproteins gekennzeichnet. Die Oligosaccharide sind entweder am Serin mit O-glykosidische Bindung verknüpft oder sie sitzen am Asparagin. Dort haben wir es mit einer N-glykosidischen Bindung zu tun. Glykoproteine bilden Antigene aus, die befähigt sind, körperfremde Verbindungen zu vernichten. Ich möchte ein Beispiel für ein solches Antigen anführen. Der erste Baustein ist eine Molekül Fucose, dieses ist ein Molekül Galactose mit einem alpha-1,2 glykosidische Bindung verknüpft. An diesem Molekül sitzt ein weiteres Galactose-Molekül. Die alpha-glykosidische Bindung ist alpha-1,3. Der vierte Baustein dieses Moleküls ist N-Acetyl-D-glucosamin. Dieser ist mit dem Galactose-Molekül unten über eine ß-1,3 glykosidische Bindung verknüpft. Wir haben es hier mit der Antigene Determinante der Blutgruppe B (Typ 1) zu tun. Der Vierfachzucker ist mit einem Glykoprotein über eine ß-glykosidische Verbindung verknüpft. Glykoproteine gewähren die interzelluläre Zell-Zell-Erkennung. Um das zu gewährleisten, ist eine hohe Variabilität der Strukturen der einzelnen Verbindungen notwendig. Die Gründe für diese hohe Variabilität sind Folgende: Zwischen den Monosaccharid-Molekülen und ihren Derivaten gibt es verschiedene Verknüpfungen: 1,2; 1,3; 1,4 und 1,6. 2. Können die Strukturen durch alpha und beta glykosidischen Bindung variieren. Die Strukturvielfalt wird auch 3. durch verschiedene funktionelle Gruppen erreicht. Anstelle der Hydroxygruppe kann beispielsweise eine N-Acetyl Gruppe vorliegen. Außerdem kann 4. die Struktur durch verschiedene aufeinander folgende Verzweigungen der Monosaccharid-Moleküle variiert werden.
  6. Zusammenfassung Glykolipide und Glykoproteine findet man in der Plasmamembran (Zellmembran). Glykolipide findet man im Gehirn und in den Nervenzellen. Man nennt sie dann Ganglioside, das sind bestimmte Sphingolipide. Ganglioside werden hauptsächlich aus Galactose und anderen Monosacchariden gebildet. Die 2. Komponente ist Ceramid, die die lipiden Eigenschaften bedingt. Ceramid besteht aus dem Alkohol Sphingosin durch Acylierung. In Glykoproteinen sind Oligosaccharide an Proteine geknüpft. So entstehen zum Beispiel Antigene. Glykoproteine bewirken die interzelluläre Zell-Zell-Erkennung. Das ist möglich, weil sie stark kombinierbar sind und damit eine hohe strukturelle Vielfalt aufweisen. Das ist möglich, weil die Monosaccharide eine starke strukturelle Vielfalt, als Folge ihrer starken Kombinierbarkeit, aufweisen. Ich danke für die Aufmerksamkeit. Alles Gute. Auf Wiedersehen.
Informationen zum Video