Salzsäure 11:40 min

Textversion des Videos

Transkript Salzsäure

Guten Tag und herzlich willkommen. Bei diesem Video geht es um die Salzsäure. Salzsäure ist eine starke, anorganische Säure. Sie ist eine wichtige, chemische Grundchemikalie. Salzsäure war bereits im Mittelalter den Arabern bekannt. Salzsäure erfährt eine breite chemische und technische Verwendung. Chlorwasserstoff, die Verbindung, aus der Salzsäure hergestellt wird, besitzt eine hohe Weltjahresproduktion; sie beläuft sich auf etwa 20 Mio. Tonnen. Kommen wir zu den physikalischen Eigenschaften. Salzsäure ist eine Lösung des Gases Chlorwasserstoff in Wasser. Es lösen sich etwa 600 Liter Chlorwasserstoff HCl in einem Liter Wasser H2O. Salzsäure ist eine farblose Flüssigkeit. In Abhängigkeit von der Konzentration liegt die Dichte im Bereich von etwa 1,1 bis 1,2 g/cm³. Konzentrierte Salzsäure besitzt eine Konzentration von 36 bis 38 %. Diese Salzsäure wird auch als rauchende Salzsäure bezeichnet, weil über der flüssigen Phase immer gasförmiger Chlorwasserstoff vorhanden ist. Sie ist aber wie jede Säure zu Reaktion mit unedlen Metallen befähigt. Kommen wir nun zur chemischen Formel. Man muss sagen, dass streng genommen Salzsäure ein Stoffgemisch ist, nämlich die Lösung von Chlorwasserstoff, dem Gas, in Wasser. Chlorwasserstoff hat die chemische Formel HCl. H ist das Symbol für Wasserstoff, Cl das Symbol für Chlor. Es ist chemisch nicht zulässig, von Wasserstoffchlorid zu sprechen. Mitunter wird die chemische Formel auch etwas ausführlicher dargestellt, sodass die chemische Bindung eingetragen wird. Man lässt dann etwas Abstand zwischen den beiden Symbolen für das Wasserstoffatom H und das Chloratom Cl und verbindet beide Elementesymbole mit einem Strich. Dieser Strich steht für ein Elektronenpaar, er bedeutet eine Einfachbindung zwischen dem Wasserstoffatom H und dem Chloratom Cl. Noch ausführlicher ist die Lewis-Schreibweise rechts, dann trägt man die chemische Bindung zwischen dem Wasserstoffatom H und dem Chloratom Cl gekennzeichnet durch den Bindungsstrich ein. Zusätzlich befinden sich am Chloratom noch 3 weitere Striche, jeder Strich bedeutet ein nichtbindendes, einsames Elektronenpaar. Wasserstoff besitzt im Ganzen nachher 2 Außenelektronen, nämlich durch das Bindungspaar. Es erhält eine Heliumkonfiguration. Das Chloratom besitzt nun 8 Außenelektronen, 2 durch das Bindungspaar und 3 durch die nichtbindenden Elektronenpaare. Damit erhält es eine Argonkonfiguration. Kommen wir nun zu den chemischen Eigenschaften von Salzsäure. Salzsäure ist ätzend, aber nicht oxidierend wie zum Beispiel Schwefelsäure. Daher ist sie auch nicht in der Lage, edle Metalle wie Kupfer chemisch anzugreifen. Salzsäure ist zur Reaktion mit unedlen Metallen befähigt. Zum Beispiel reagiert Eisen mit Salzsäure zu Eisen(II)-chlorid, wobei Wasserstoff frei wird. In Formelschreibweise Fe+2HCl->FeCl2+H2. Diese Reaktion mit unedlen Metallen ist eigentlich erst durch die Dissoziation der Salzsäure möglich. Wir schreiben: 1 Molekül Chlorwasserstoff reagiert zu 1 Wasserstoff-Ion und 1 Chlorid-Ion. Das geschieht in wässriger Lösung, daher schreiben wir H2O über den Doppelpfeil. In Formelschreibweise: HCl dissoziiert in wässriger Lösung zu H+ + Cl-. Die Wasserstoff-Ionen, H+, machen den sauren Charakter der Salzsäure aus. Salzsäure ist zur Reaktion mit Metalloxiden befähigt. So reagiert Magnesiumoxid mit Salzsäure zu Magnesiumchlorid und Wasser. In Formelschreibweise MgO+HCl->MgCl2+H2O. Die vierte Reaktion, die für Salzsäure von Bedeutung ist, ist die Neutralisation. Ich gebe zunächst ein Beispiel dafür an. Natriumhydroxid + Salzsäure -> Natriumchlorid + Wasser. In Formelschreibweise: NaOH+HCl->NaCl+H2O. Diese Reaktion entspricht dem Prinzip Base + Säure->Salz + Wasser. Kommen wir jetzt zu den Verwendungsmöglichkeiten von Salzsäure. Diese sind sehr vielfältig und ich möchte nur einige wenige vorstellen. In der analytischen Chemie findet Salzsäure weite Verwendung. Sie wird unter anderem für die Titration verwendet. Dabei reagiert Säure mit Base, es kommt also zu einer Neutralisation. Als Weiteres wird Salzsäure für die Entsalzung von Wasser eingesetzt. Das findet in Ionenaustauschern statt. Ionenaustauscher sind Kunstharze, hier orangefarben dargestellt, die auf der Oberfläche saure Gruppen H+ enthalten. Der Ionenaustauscher ist somit eine Säure. Ich habe an einer Stelle dargestellt, dass sich hier ein Natrium-Ion Na angesetzt hat. Dieses Natrium-Ion entstammt dem Wasser, es war dort gelöst als Na+. Auf dem Rückweg ist in das Wasser ein Wasserstoff-Ion H+ gegangen. Das ist der Ionenaustausch. Wenn nun alle Wasserstoff-Ionen auf dem Ionenaustauscher durch Natrium-Ionen ausgetauscht wurden, so ist der Ionenaustauscher nicht mehr aktiv. Dann wird Salzsäure eingesetzt. Die Wasserstoff-Ionen der Salzsäure setzen sich auf dem Ionenaustauscher fest und auf dem Rückweg bewegen sich Natrium-Ionen vom Ionenaustauscher zum Chlorid-Ion der Salzsäure. Diesen Prozess bezeichnet man als Regenerierung des Ionenaustauschers. Als Weiteres wird Salzsäure für das Beizen von Stahl verwendet. Eine Beispielreaktion ist Fe2O3+Fe+6HCl->3FeCl2+3H2O. Eisenoxid und Eisen auf der Oberfläche reagieren mit Salzsäure zu Eisenchlorid und Wasser. Wichtig für die Reaktion ist, dass durch die Einwirkung der Salzsäure Rost und Eisenoxid von der Metalloberfläche entfernt werden. Des Weiteren wird Salzsäure zur Herstellung verschiedener organischer Verbindungen eingesetzt. Eine Möglichkeit für die Herstellung ist Plasts, Polyvinylchlorid, PVC. Hierbei reagiert ein Kohlenwasserstoff mit einer Dreifachbindung mit Chlorwasserstoff und es entsteht CH2 Doppelbindung CHCl. Das Reaktionsprodukt heißt Vinylchlorid und ist der Ausgangsstoff für die Herstellung von Polyvinylchlorid. Der Kohlenwasserstoff mit der Dreifachbindung wird als Acetylen oder auch Ethin bezeichnet. Und schließlich möchte ich die Herstellung anorganischer Verbindungen nennen. Als Beispiel habe ich die Reaktion eines Eisenoxids mit Salzsäure gewählt. Die Formelgleichung lautet Fe2O3+6HCl->2FeCl3+3H2O. Das Eisenoxid Fe2O3 ist Eisen(III)-Oxid. Als Erz wird es auch als Hämatit bezeichnet. Das Reaktionsprodukt ist ein Eisensalz, Eisen(III)-Chlorid. Zum Schluss möchte ich noch kurz über die Herstellung von Salzsäure sprechen. Natürlich muss man für die Salzsäureherstellung Chlorwasserstoff synthetisieren. Im Labor kann man Chlorwasserstoff durch die Umsetzung von konzentrierter Schwefelsäure mit trockenem Natriumchlorid herstellen. Es bildet sich dabei Natriumsulfat und Chlorwasserstoff wird freigesetzt. Die Formelgleichung lautet H2SO4+2NaCl->Na2SO4+2HCl (g). Im ersten Fall entsteht Chlorwasserstoff bei der organischen Synthese als Nebenprodukt. Ein Kohlenwasserstoff wird mit Chlor umgesetzt, es entsteht ein Chlorkohlenwasserstoff und Chlorwasserstoff wird in gasförmiger Form frei. Nur der geringere Teil des Chlorwasserstoffs wird über die Chloralkalielektrolyse synthetisiert. Im Ergebnis der letzteren bilden sich Wasserstoff und Chlor, die entsprechend der Knallgasreaktion Chlorwasserstoff bilden. Ich möchte noch erinnern, dass Chlorwasserstoff ein Gas ist. Erst wenn es in Wasser hineingegeben wird, erhalten wir Salzsäure. Ich danke für die Aufmerksamkeit. Alles Gute, auf Wiedersehen.

Informationen zum Video
4 Kommentare
  1. 001

    Du hast alles richtig interpretiert. Auch sind deine Versuchsergebnisse alle in Ordnung. Die Reaktion
    MgO + H2O --> Mg(OH)2
    läuft nämlich nicht so glatt ab, wie man es im Anfängerunterricht lernt.
    Bei höheren pH-Werten könnte der Niederschlag wieder in Lösung gehen. Probier es mal aus.
    Alles Gute

    Von André Otto, vor mehr als 4 Jahren
  2. Ich2

    Eine Frage zur Reaktion bei 5Min10Sek:
    Mich hat es neulichst gereizt das schwerlösliche MgO in Lösung zu bringen. Da ich kein MgO als Pulver da hatte, hab ich ein Magnesiumstreifen verbrannt und das entstandene weiße Pulver (ca 100mg davon) hab ich versucht in H2O zu lösen. Nix passiert. Bis zum Sieden erhitzt = immmer noch nichts vom MgO gelöst. Das MgO/H2O Gemisch mit etwas Salzsäure verdünnt = Nichts. Nun gut, dann bin ich ins Freie gegangen und hab ca 50ml konz. HCL (30-33%) in ein neues Becherglas gegeben und wieder ca 100mg MgO dazugegeben und kräftig umgerührt. Es hat sich sichtbar KEIN MgO in konz. HCL gelöst?!? Enttäuscht hab ich dann die konz. HCL mit Natronlauge neutralisiert und siehe da, knapp über pH=7 ist ein weißer Niederschlag ausgefallen. Das gebildete NaCl aus der HCl und NaOH-Lsg kanns nicht sein, da NaCL gut löslich ist. Nun Frage: War dieser voluminöser weißer Niederschlag etwa Mg(OH)2? Hatte ich es doch vorher geschafft etwas MgO in HCL zu lösen, hatte es nur nicht gemerkt, da ich vlt. zuviel MgO in zuwenig konz. HCL versucht hatte zu lösen?
    Langer Kommentar, eine Antwort wäre mir aber sehr wichtig.
    mfg

    Von Dflow, vor mehr als 4 Jahren
  3. Martina%20l%c3%a4chelt sw

    Ah ... jetzt geht es ... hmmmmm ...

    Von Martina Z., vor fast 5 Jahren
  4. Martina%20l%c3%a4chelt sw

    Warum sehe ich nichts? Ich kann nur hören ... !?

    Von Martina Z., vor fast 5 Jahren