Advent, Advent, 1 Monat weihnachtliche Laufzeit geschenkt.

Nicht bis zur Bescherung warten, Aktion nur gültig bis zum 18.12.2016!

Textversion des Videos

Transkript Zusammenhang zwischen Farbe und Struktur

Guten Tag und herzlich willkommen! In diesem Video geht es um: Zusammenhang zwischen Struktur und Farbe (Grundkurs). Der Film gehört zur Reihe "Farbstoffe". Zur Erlangung nötiger Vorkenntnisse solltest du die Farbstoff-Videos bereits gesehen haben. Auf alle Fälle aber das Video zur Einführung. Ziel des Videos ist es, dir den grundlegenden Zusammenhang zwischen Struktur und Farbe eines Farbstoffs zu erklären. Das Video habe ich in 6 Abschnitte unterteilt:

  1. Stoffe im Farbspektrum
  2. Farbig oder nicht farbig
  3. Rote Stoffe
  4. Blaue Stoffe
  5. Grüne Stoffe Und 6. Der große Zusammenhang  
  6. Stoffe im Farbspektrum: Die Stoffe sind im Farbspektrum folgendermaßen angeordnet: rot, orange, gelb, hellgrün, dunkelgrün, hellblau, dunkelblau und violett. Die Farben entsprechen dabei bestimmten Werten der Wellenlänge Lambda. Sie überstreichen einen Bereich von etwa 750 bis 400 Nanometer. Rot liegt dabei zwischen 750 und 640 Nanometer. Orange überstreicht den Bereich von 640 bis 600 Nanometer. Gelb liegt im Bereich zwischen 600 und 570 Nanometer. Hellgrün liegt im engen Bereich zwischen 570 und 560 Nanometer. Für Dunkelgrün reicht der Bereich von 560 bis 500 Nanometer. Hellblau liegt zwischen 490 und 480 Nanometer. Dunkelblau überstreicht 480 bis 460 Nanometer. Und violett schließlich liegt zwischen 460 und 400 Nanometer. Wir haben es hier mit dem Absorptionsspektrum des Lichtes zu tun. Das heißt, dem Spektrum, das einen bestimmten Teil des weißen Lichtes absorbiert. Gehen wir nach links, über den roten Bereich hinaus, so erhalten wir infrarotes Licht. Gehen wir nach rechts, über den violettfarbenen Bereich hinaus, so erhalten wir ultraviolettes Licht. Nachdem wir das Absorptionsspektrum betrachtet haben, wollen wir nun den Zusammenhang zwischen Absorption und Farbe darstellen. Jeder absorbierten Farbe des Lichtes entspricht eine entsprechende Gegenfarbe. Diese macht die Farbe des bestrahlten Stoffes aus. Bei roter Absorption ist der Stoff grün. Bei orangefarbener Absorption ist der Stoff hellblau. Bei gelber Absorption ist der Stoff dunkelblau. Bei grüner Absorption ist der Stoff violett. Und bei dunkelgrüner Absorption ist der Stoff rot. Bei hellblauer Absorption ist der Stoff schließlich orangefarben. Die entsprechenden Farben von Absorption und Farbe des Stoffes bezeichnet man als Komplementärfarben.

  7. Farbig und nicht farbig: Es gibt eine Fülle von farbigen chemischen Verbindungen. Hier einige Beispiele: Schwefel, Curcuma, Indigo, Ultramarin, Methylorange und Zinnober. Es gibt aber auch viele Stoffe, die nicht farbig sind. Zucker ist weiß, das Mineral Schörl ist schwarz. Der Stoff des Sofatutorpreises ist durchsichtig. Was macht nun den Unterschied, dass einige Stoffe farbig, die anderen weiß, schwarz oder durchsichtig sind? Die Frage können wir nur dann beantworten, wenn wir uns die Energien bestimmter Molekülorbitale anschauen. Wenn weißes Licht auf einen Stoff fällt, so sind zwei Orbitale von Bedeutung. Das höchste Besetzte und das niedrigste Unbesetzte. Betrachten wir den Fall, dass die Energie zwischen beiden recht hoch ist, dann reicht die Energie des weißen Lichtes nicht aus, um ein Elektron von dem unteren auf das obere Orbital zu heben. Es findet keine Anregung statt. Folglich kann kein Teil des weißen Lichtes absorbiert werden. Das bedeutet, dass der Stoff entweder weiß oder farblos ist. Wie sieht es aus, wenn der Abstand zwischen dem besetzten und dem unteren unbesetzten Orbital sehr klein ist? Dann ist die Lichtenergie zu groß. Auch hier findet keine Anregung und keine Absorption statt. Nun gibt es aber auch noch den Fall, dass die Energiedifferenz zwischen diesen beiden Fällen links und rechts liegt. Die Energie entspricht dann der Energie des weißen Lichtes. Nehmen wir einmal an, es wurde grünes Licht absorbiert. Dann wird die Komplementärfarbe, das ist rotes Licht, reflektiert. Die Farbe des Stoffes ist folglich: rot. Wir wollen diesen Zusammenhang an einigen Beispielen feststellen. Betrachten wir dazu:

Rote Stoffe: Ein Beispiel dafür ist die Verbindung Methylorange. Charakteristisch für organische Farbstoffe ist der Wechsel von Einfach- und Doppelbindungen im gesamten Molekül. Man sagt auch, die Doppelbindungen sind konjugiert. Außerdem sehen wir ganz rechts die Dimethylaminogruppe. Das ist ein Auxochrom. Rechts sehen wir den Sulfonsäurerest. Das ist ein Antiauxochrom. Beide Bedingungen sorgen dafür, dass die Energie zwischen oberem besetzten und unterem unbesetztem Orbital richtig ist. Der Wert liegt im Bereich des sichtbaren Lichtes. Es wird grünes Licht absorbiert. Die Komplementärfarbe zu grün ist rot, und das ist auch gleichzeitig die Farbe des Farbstoffes Methylorange.

  1. Blaue Stoffe: Als Beispiel möchte ich hier Indigo anführen. Auch hier sieht man sehr schön den Wechsel zwischen Einfach- und Doppelbindungen. Das Molekül ist konjugiert. Spezielle Auxochrome oder Antiauxochrome gibt es hier nicht. Dafür ist das konjugierte System ziemlich groß. Die für die Anregung notwendige Energie entspricht der Energie des Lichtes. Die Absorption findet im orangefarbenen Bereich statt. Die Komplementärfarbe zu orange ergibt die Farbe des Stoffes. Indigo ist blau.

  2. Grüne Stoffe: Ein klassisches Beispiel für einen grünen Farbstoff ist Malachitgrün. Auch hier treffen wir den Wechsel von Einfach- und Doppelbindungen. Wir haben es folglich mit einem konjugierten, aber in diesem Fall recht großen System zu tun. Außerdem verfügt das Molekül über ein Auxochrom und Antiauxochrom. Die Anregungsenergie ist gering, entspricht aber dem Energiebereich des Lichtes. Wie erwartet, wird rotes Licht absorbiert. Die Farbe von Malachitgrün ist die Komplementärfarbe zu rot, also grün.

  3. Der große Zusammenhang: Wir wollen den großen Zusammenhang zwischen Struktur und Farbe für organische Farbstoffe am Beispiel des Malachitgrüns darstellen. Um farbig zu sein, benötigt der Farbstoff ein großes konjugiertes Pi-Elektronensystem und gegebenenfalls auxochrome wie auch antiauxochrome Gruppen. Nur dann kann man damit rechnen, dass der Farbstoff auch ein Farbstoff ist - eine Farbe besitzt. Methylorange hat ein relativ kleines konjugiertes Pi-Elektronensystem. Die Anregungsenergie, beziehungsweise Absorptionsenergie, ist daher groß. Sie liegt im blauen Bereich. Die Farbe von Methylorange ist die dazugehörige Komplementärfarbe: orange. Malachitgrün hat ein großes Pi-Elektronensystem. Die Anregungsenergie, respektive Absorptionsenergie, ist klein. Sie liegt im roten Bereich. Als Farbe des Farbstoffs ergibt sich die zu rot komplementäre Farbe; und das ist grün. Betrachten wir nun, was geschieht, wenn die Größe des Pi-Systems und die Auxochrom-Antiauxochrom-Wirkung steigen. Die Farbe des Stoffes verändert sich von gelb, orange, rot, violett, blau bis grün. Zum Abschluss noch 2 ganz wichtige Bemerkungen: Als 1. Die Komplementärfarben sind nicht durch einfache Farbspiegelungen einander zuzuordnen. Und 2. Die Farbe aus der Formel kann nur der Experte ablesen. Als solchen auf diesem Gebiet bezeichnet sich der Autor des Videos nicht. Ich danke für die Aufmerksamkeit. Alles Gute, auf Wiedersehen!

Informationen zum Video