Advent, Advent, 1 Monat weihnachtliche Laufzeit geschenkt.

Nicht bis zur Bescherung warten, Aktion nur gültig bis zum 18.12.2016!

Azokupplung 11:20 min

Textversion des Videos

Transkript Azokupplung

Guten Tag und herzlich willkommen!

In diesem Video geht es um die Azokupplung. Der Film gehört zur Reihe "Reaktionsmechanismen". Als Vorkenntnisse solltest du die organische Chemie einschließlich 11. Schuljahr beherrschen.

Mein Ziel ist es, die Herstellung von Diazoniumsalzen zu beschreiben und ihre Reaktion zu Azoverbindungen darzustellen.  Der Film besteht aus 6 Abschnitten: 1. Azoverbindungen 2. Diazotierung und Azokupplung 3. Der Mechanismus 4. Reaktionsführung 5. Stabilität der Diazoniumsalze und Azoverbindungen 6. Zusammenfassung  

  1. Azoverbindungen

Azoverbindungen sind farbige Stoffe. Der Indikator Methylorange ist eine Azoverbindung. Auch einige Lebensmittelfarbstoffe sind Azoverbindungen. Azobenzol ist orange. Anilingelb hat die Farbe seines Namens. Ebenso Buttergelb. Methylorange besitzt diese Formel, Methylrot hat diese Struktur. Und schließlich noch größere Moleküle, die Azofarbstoffe sind: Kongorot, das magentafarbende Litholrubin, das gelbe Tartrazin und schließlich Bismarckbraun. Die einfachste Azoverbindung ist Azobenzol. Azobenzol ist ein Farbstoff. Azobenzol enthält die Azogruppe. Daher ist es ein Azofarbstoff. Alle Azoverbindungen sind vom Azobenzol abgeleitet. Azoverbindungen sind aromatisch und enthalten mitunter mehrere Azogruppen.     2. Diazotierung und Azokupplung

Man startet mit einem aromatischen Amin. Unser Amin heißt Anilin. Aus dem Anilin stellt man ein Diazonium-Ion her. Diese Reaktion nennt man Diazotierung. Zunächst wird konzentrierte Salzsäure hinzugegeben. Als zweites verabreicht man eine Lösung von Natriumnitrit. Das ist ein Salz der salpetrigen Säure. Im zweiten Schritt reagiert ein Aromat mit dem Diazonium-Ion. Dabei handelt es sich um eine elektrophile Substitution am Kern. Es entsteht eine Azoverbindung und ein Proton wird frei. Die Azoverbindung ist Azobenzol.      3. Der Mechanismus

a) Herstellung des Diazonium-Ions NaNO2+HCl→HNO2+NaCl. HNO2 ist salpetrige Säure. Die salpetrige Säure, hier in Lewis-Schreibweise, wird protoniert. Das Proton geht an ein Elektronenpaar eines Sauerstoffatoms. Es entsteht ein Oxonium-Ion. Das Oxonium-Ion spaltet ein Wassermolekül ab und es entsteht ein Nitrosylkation. Das Nitrosylkation ist ein Elektrophil. Es folgt der elektrophile Angriff des Nitrosylkations. Seine positive Ladung vereinigt sich mit dem Elektronenpaar des Amins. Dabei entsteht dieses Ion. Ein Proton wird abgespalten und die entstandene Verbindung lagert um. Es entsteht Diazoniumhydroxid. Der nächste Schritt ist Protonierung mit anschließender Wasserabspaltung. Bei der Protonierung entsteht wieder ein Oxonium-Ion. Das Oxonium-Ion spaltet ein Wassermolekül ab und es entsteht das Diazonium-Ion. Das Diazonium-Ion bildet Mesomere aus. Zwei Mesomere sind hier links und rechts dargestellt. Selbst ist das Diazonium-Ion ein Elektrophil. 

b) Der zweite Schritt, die eigentliche Azokupplung Azokupplung ist eine typische elektrophile Substitution am Kern, am Aromaten. Ähnliche Reaktionen finden bei der Alkylierung und Acylierung nach Friedel-Crafts statt. Das elektrophile Ion reagiert mit den Elektronen des Aromaten. Es entsteht ein π-Komplex. Daraus entsteht ein σ-Komplex. Der Ring mit Ladung ist mesomeriestabilisiert. Hier sind die 3 Grenzstrukturen. Zusammenfassend sieht die Struktur in etwa so aus. Unter Abspaltung eines Protons entsteht nun die Azoverbindung. Unsere Azoverbindung heißt Azobenzol.      4. Reaktionsführung

a) Diazoniumsalz Als Amin soll Anthranilsäure verwendet werden. Konzentrierte Salzsäure und Wasser werden hinzugegeben. Das Reaktionsgemisch wird in ein Becherglas gefüllt, das Eis und Salzsäure enthält. Nun wird die Natriumnitritlösung addiert. Die Reaktionstemperatur soll 5°C nicht überschreiten. Es bildet sich ein gelbes Diazoniumsalz. 

b) Azokupplung Das Diazonium-Ion des Diazoniumsalzes reagiert mit dem entsprechenden Amin. Es entsteht die rote Azoverbindung Methylrot.      5. Stabilität der Diazoniumsalze und Azoverbindungen

Ein einfaches Diazoniumsalz sieht so aus. Es enthält neben dem Diazonium-Ion noch ein Chlorid-Ion. Für die Stabilitätsbetrachtung benötigen wir das Chlorid-Ion nicht. Wir schauen uns dafür nur das Diazonium-Ion an. Offensichtlich besitzt es mehrere mesomere Grenzstrukturen. Wir wollen sie zählen. Das ist die erste, das hier ist die zweite, die dritte, die vierte und schließlich die fünfte. 5 mesomere Grenzstrukturen konnten wir ermitteln. Es erfolgt hier offensichtlich eine Mesomeriestabilisierung hauptsächlich durch den aromatischen Ring. Fehlt der aromatische Ring und sitzt dort eine Methylgruppe, so findet die Stabilisierung nicht statt. Dieses Ion ist instabil. Stellvertretend für die Azoverbindungen wollen wir Azobenzol betrachten. Es handelt sich hier um ein konjugiertes System. Doppel- und Einfachbindungen wechseln ab. Das Molekül ist stabilisiert. Fehlen die aromatischen Ringe, fehlt die Konjugation. Das Molekül ist instabil.      6. Zusammenfassung

Aromatische Amine reagieren mit Salzsäure und Natriumnitrit zu Diazonium-Ionen. Die Reaktion verläuft nach einem mehrstufigen Mechanismus. Die Reaktionstemperatur bei der Ionenbildung soll 5°C nicht überschreiten. Die Reaktion bezeichnet man als Diazotierung. Durch das Diazonium-Ion erfolgt ein elektrophiler Angriff auf einen Aromaten. Im Ergebnis entsteht eine Azoverbindung. Diese Reaktion bezeichnet man als Azokupplung. Das Diazonium-Ion und die Azoverbindung sind beide mesomeriestabilisiert. Die Azoverbindung ist ein konjugiertes System, wodurch die Stabilisierung offensichtlich wird. Die aromatischen Gruppen führen zu stabilisierten Spezies. 

Ich danke für die Aufmerksamkeit. Alles Gute, auf Wiedersehen!

Informationen zum Video
4 Kommentare
  1. Default

    Vielen Dank! :)

    Von Tatjana Schmal, vor mehr als 3 Jahren
  2. 001

    Aliphatische Azoverbindungen sind nicht stabil.

    Von André Otto, vor mehr als 3 Jahren
  3. 001

    Der Mechanismus erfolgt analog. Die aliphatische Verbindung (deine) ist weniger stabil als ein aromatisches Diazoniumsalz. Unter welchen Bedingungen (und ob überhaupt!)der Aliphat tatsächlich stabil ist, muss man recherchieren.
    Alles Gute

    Von André Otto, vor mehr als 3 Jahren
  4. Default

    Frage: wir haben eine Aufgabe zur Diazotierung bekomm, hier reagiert aber lediglich ein 4-Methylcyclohexylamin mit HCl und NaNO2. Jetzt sollen wir den Reaktionsmechanismus erstellen ( sieht dieser genauso aus wie bei Anilin?) und wir sollen erklären was der unterschied ist (Anilin= Aormitsch, cyclohexylamin= nicht aromtatisch) aber welchen Einfluss hat das auf meinen Reaktionsmechanismus?

    Von Tatjana Schmal, vor mehr als 3 Jahren