Advent, Advent, 1 Monat weihnachtliche Laufzeit geschenkt.

Nicht bis zur Bescherung warten, Aktion nur gültig bis zum 18.12.2016!

Textversion des Videos

Transkript Farbstoffe – Einführung (Expertenwissen)

Guten Tag und herzlich willkommen. Dieses Video heißt: Farbstoffe - Einführung für den Leistungskurs. Der Film gehört zur Reihe "Farbstoffe". Als nötige Vorkenntnisse solltest du über solides Wissen der organischen Chemie verfügen: Du kennst dich gut aus mit Kohlenwasserstoffen und weißt gut Bescheid, was konjugierte π-Systeme sind. Mein Ziel ist es, dir im Video einige Beispiele für Farbstoffe zu geben. Ich möchte grundlegende Strukturmerkmale zeigen und eine Erklärung für die Farbigkeit geben.

Das Video ist in 6 Abschnitte unterteilt: 1. Was verstehen wir unter einem Farbstoff? 2. Welche Farbstoffe betrachten wir? 3. Absorption und Farbe 4. Kleine MO-Theorie am Beispiel der Polyene 5. Chromophore 6. Auxochrome und Antiauxochrome   1. Was verstehen wir unter einem Farbstoff? Wie kommt es, dass einige Stoffe schwarz, weiß oder farblos sind, während sich andere durch große Farbigkeit auszeichnen? Reicht Farbigkeit allein für eine chemische Verbindung, um ein Farbstoff zu sein? Die lapidare Antwort ist: nein. Oder ketzerisch gesprochen: Farbigkeit ohne Anwendung ist nutzlos. Wenn eine farbige Verbindung zum Färben von T-Shirts geeignet ist, darf sie mit Fug und Recht den Namen "Farbstoff" tragen. Im konkreten Fall spricht man dann auch von Färbemittel.   2. Welche Farbstoffe betrachten wir? Zum einen gibt es eine Vielzahl anorganischer Verbindungen, die sich durch große Farbigkeit auszeichnen. Einige dieser Verbindungen sind allerdings zum Färben ungeeignet. Es verbleiben lediglich 3 Kandidaten, die den Namen "Farbstoff" führen dürfen. Es handelt sich dabei um: Azurit, Malachitgrün und Zinnober. Schon in der Antike wurden diese Stoffe für die Wandmalerei verwendet. Anorganische Farbstoffe wollen wir in diesem Video nicht betrachten. Dafür werden wir uns näher mit organischen Farbstoffen beschäftigen. Ein organischer Farbstoff ist Kristallviolett. Ein weiterer Vertreter ist Methylorange und als drittes Beispiel möchte ich Alizarin nennen. Kristallviolett gehört zu den Triphenylmethanfarbstoffen. Bei Methylorange handelt es sich um einen Azofarbstoff. Alizarin ist ein Anthrachinonfarbstoff.   3. Absorption und Farbe Wenn weißes Licht auf ein Objekt einstrahlt, ist es möglich, dass ein Teil aus dem Bereich des weißen Lichtes - zum Beispiel das rote Licht - absorbiert wird. Der Rest des weißen Lichtes wird reflektiert. Wir nehmen das Objekt mit grüner Farbe wahr.   4. Kleine Molekülorbital-Theorie am Beispiel der Polyene Das erste Polyen, bei dem sich zwei Doppelbindungen überlagern, ist Butadien. Die besetzten π-Orbitale sind im Butadien-Molekül so angeordnet. Man erhält ein konjugiertes π-Elektronensystem. Die π-Orbitale überlappen sich gegenseitig. Beim Hexatrien-Molekül kommt eine weitere Doppelbindung zum konjugierten π-System hinzu. Wir wollen die π-Elektronen-Systeme in den Polyenen durch eine qualitative Molekülorbitaltheorie erklären. Beginnen wir mit dem Butadien. Es verfügt über 4 π-Atom-Orbitale, die jeweils mit 1 Elektron besetzt sind. Nach der MO-Theorie entstehen 2 bindende Molekülorbitale mit niedriger Energie, unten, und 2 nicht bindende Molekülorbitale mit hoher Energie, oben. Für die Farbigkeit der Verbindung sind 2 Molekülorbitale wichtig: zum einen das HOMO, das höchste, besetzte Molekülorbital und als Zweites das LUMO, das niedrigste, unbesetzte Molekülorbital. Der Energieunterschied zwischen beiden entspricht der Energie des absorbierten Lichtes. Tragen wir nun die Energien von LUMO und HOMO bzw. deren Differenz gegen die Anzahl der Doppelbindung im Polyen auf. Die Situation lässt sich folgendermaßen skizzieren: Die Energie der LUMO sieht man oben. Die Energie der HOMO sieht man unten. Bildlich gesprochen: Durch die steigende Anzahl von Molekülorbitalen werden HOMO und LUMO zusammengedrückt. Die Energie E entspricht der Energie des absorbierten Lichtes. Für eine geringe Anzahl von Doppelbindungen liegt die Energie im UV-Bereich und die Verbindungen sind farblos. Bei 9 konjugierten Doppelbindungen wird das erste farbige Polyen beobachtet. Die Verbindung ist gelb. Das bedeutet, dass im blau-violetten Bereich absorbiert wird.   5. Chromophore Bei Chromophoren handelt es sich um farbgebende Strukturen eines Farbstoffes. Schaut euch doch einmal die folgenden Strukturen an: Alizarin; Kristallviolett; Methylorange. Welche farbgebenden Strukturen haben diese organischen Farbstoffe? Zum einen handelt es sich - wie schon besprochen - um konjugierte π-Systeme. Aromatische Fragmente gehören ebenfalls dazu. Ein dritter Baustein sind chinoide Strukturen. In der Pikrinsäure findet man einen weiteren farbgebenden Bestandteil. Das sind Nitrogruppen in Kombination mit Hydroxygruppen. Bei allen diesen Molekülbestandteilen handelt es sich um Chromophore oder dem deutschen Begriff um Farbträger.   6. Auxochrome und Antiauxochrome Schaut euch doch einmal die Struktur des Methylorange an. Es enthält ein Auxochrom und ein Antiauxochrom. Auxochrome sind zum Beispiel: die Dimethylaminogruppe, die Aminogruppe, die Methoxygruppe und die Hydroxygruppe. Alle diese Gruppen zeigen einen +M-Effekt, d.h. sie schieben Elektronen in das System ein. Im Absorptionsspektrum kommt es zu einer Farbverschiebung in den rotgelben Bereich. Die Verschiebung findet zu längeren Wellenlängen statt. Man nennt Auxochrome auch Bathochrome. Antiauxochrome hingegen sind die Sulfonsäuregruppe und die Carboxygruppe. Antiauxochrome zeigen einen -M-Effekt, d.h. sie ziehen Elektronen aus dem System ab. Im Absorptionsspektrum kommt es zu einer Farbverschiebung in den blaugrünen Bereich. Die Wellenlänge des absorbierten Lichtes wird kürzer. Man spricht hier auch von Hypsochromen.

Ich danke für eure Aufmerksamkeit. Alles Gute. Auf Wiedersehen.

Informationen zum Video