Advent, Advent, 1 Monat weihnachtliche Laufzeit geschenkt.

Nicht bis zur Bescherung warten, Aktion nur gültig bis zum 18.12.2016!

Textversion des Videos

Transkript Temperaturabhängigkeit der Reaktionsgeschwindigkeit

Guten Tag und herzlich willkommen. In diesem Video geht es um die Temperaturabhängigkeit der Reaktionsgeschwindigkeit. Der Film gehört zur Reihe Reaktionskinetik kurz Kinetik. Als Vorkenntnisse solltest du solides Wissen in Kinetik mitbringen. Im Film möchte ich den Zusammenhang zwischen der Geschwindigkeitskonstanten (k) und der der absoluten Temperatur (T) und die praktische Bedeutung dieser Beziehung darstellen. Der Film ist 6-geteilt: 1. Kinetische Gleichungen 2. Die Arrhenius-Gleichung 3. Stimmt die 10°-Regel? 4. Die Knallgasreaktion 5. Praktische Folgerungen 6. Zusammenfassung   1. Kinetische Gleichungen Es gibt verschiedene kinetische Gleichungen, z. B. V die Reaktionsgeschwindigkeit = k, die Geschwindigkeitskonstante × Konzentration c, auch V = k × c² ist möglich oder aber V=k×CA×CB oder V=k×CA×CB². Als letztes Beispiel für eine kinetische Gleichung: V=k×CA×CB×CC k ist die Geschwindigkeitskonstante, eine Konstante also und wir wissen, dass k temperaturabhängig ist, aber wie wird diese Abhängigkeit beschrieben? Wovon hängt k ab? 2. Die Arrheniusgleichung Der Nobelpreisträger Svantje Arrhenius entwickelte 1889 eine Gleichung, die den Zusammenhang zwischen Geschwindigkeitskontante und absoluter Temperatur (T) darstellt. Sie lautet: k=A×e-(Ea)/(R×T) k, das wissen wir bereits, ist die Geschwindigkeitskonstante. A ist der sogenannte Präexponentialfaktor. Ea ist die für die Reaktion charakteristische Aktivierungsenergie. Bei R handelt es sich um die universelle Gaskonstante. Groß T ist die absolute Temperatur. A und Ea sind reaktionsabhängig und in einem nicht zu großen Temperaturintervall konstant. Man sieht: Mit steigender Temperatur steigt auch die Geschwindigkeitskonstante. Damit steigt auch die Geschwindigkeit einer chemischen Reaktion, ein Beispiel wäre: V=k×C. 3. Stimmt die 10°-Regel? Sie besagt, dass bei einer chemischen Reaktion eine Temperaturerhöhung um 10° dazu führt, dass die Reaktionsgeschwindigkeit v, das heißt, die Geschwindigkeitskonstante k, um den Faktor 2-3 steigt. Wir wollen einen Test mit der Arrhenius-Gleichung ausführen. In der Gleichung 1 schreiben wir die Arrhenius-Gleichung auf. Wir nehmen an, dass es einen Steigerungsfaktor von 2 gibt, das heißt in der 2. Gleichung steht anstelle von k, 2 k und anstelle von T steht, entsprechend nach Bedingung, T+10. Wir dividieren 2/1, dann formen wir um Logarithmieren. Wir erhalten: ln2= der rechte Term. Wir multiplizieren beide Seiten mit groß R und bilden auf der rechten Seite, bei den Temperaturen den Hauptnenner. Dann teilen wir durch 10. Nun wird mit T×(T+10) multipliziert. Auf der linken Seite erhalten wir, von den Temperaturen, eine Konstante und auf der rechten Seite steht die Aktivierungsenergie (Ea). Wir wollen in Si-Einheiten arbeiten. Dann sparen wir uns das Einsetzen der Einheiten. R ist 8,314 in Si-Einheiten multipliziert mit ln2/10 ergibt das 0,576. Wir haben eine kleine Formel entwickelt, mit deren Hilfe wir die 10°-Regel überprüfen können. In die obere Zeile schreiben wir die absoluten Temperaturen zwischen 300 und 600 Kelvin in 100er Schritten. Für die Aktivierungsenergien unter den Bedingungen erhalten wir Werte zwischen 54 und 211 kJ/mol. Es handelt sich um plausible Werte für die Aktivierungsenergien, um vernünftige, d. h. die Regel ist eine gute Orientierungshilfe. 4. Die Knallgasreaktion Wir betrachten eine Stufe der Reaktion, d. h. die Reaktion eines Wasserstoffmoleküls mit einem Sauerstoffmolekül unter Bildung eines Wassermoleküls und der Entstehung eines Sauerstoffradikals. Dafür wurde eine Aktivierungsenergie von 295 kJ/mol gemessen. Wir erinnern uns an unsere kleine Gleichung aus dem vorherigem Abschnitt. R/10 = 0,314. Anstelle ln2 schreibe ich hier lnn. n ist der Faktor, um den die Reaktionsgeschwindigkeit sich erhöht. Für die Temperaturen kann ich anstelle von TxT+10 auch T²+10T schreiben. Auf der rechten Seite steht, wie gehabt, die Aktivierungsenergie. Wir teilen durch 0,8314 und (T²+10T) und erhalten folgenden Ausdruck. Für die Temperatur verwenden wir einen plausiblen Wert von T=700 Kelvin. Wir formen den Logarithmus in einen exponentiellen Ausdruck um und setzen die entsprechenden Werte ein. Wir erhalten n=1,38, d. h. die Reaktionsgeschwindigkeit erhöht sich um den Faktor 1,38. Das ist gar nicht so schlecht. Wir stellen fest: Auch hier erhält man einen plausiblen Wert zugunsten der 10°-Regel. 5. Praktische Folgen Die gesammelten Erkenntnisse haben Auswirkungen auf praktische Belange, auf die Chemie. Wir schreiben noch einmal die Arrhenius-Gleichung auf. Wenn die Temperatur gegen 0 geht, so geht auch die Geschwindigkeitskontante gegen 0. Es findet keine Reaktion statt. Geht T gegen hohe Temperaturen, so geht k gegen einen Grenzwert, nämlich genau gegen A. Die Reaktionsgeschwindigkeit bewegt sich gegen ein Maximum. Grafisch sieht das so aus: Wenn wir k über T auftragen, so bewegt sich die Kurve aus dem Koordinatenursprung und nähert sich asymptotisch an einer parallelen Linie zur T-Achse an. Erwärmung im unteren Temperaturbereich ist am effektivsten. Erwärmung bei hohen Temperaturen hat wenig Sinn. Man sieht: Im unteren Temperaturbereich hat eine Temperaturzunahme eine große Auswirkung auf die Geschwindigkeitskonstante der Reaktion. Im oberen Temperaturbereich ist die Veränderung der Geschwindigkeitskonstanten nur marginal. 6. Zusammenfassung Die Geschwindigkeitskonstante einer chemischen Reaktion wird durch die Arrhenius-Gleichung beschrieben.

Bei Temperaturerhöhungen steigt auch die Geschwindigkeitskonstante an. Umgekehrt wird die Temperatur vermindert, so fällt auch die Geschwindigkeitskonstante. Wir konnten zeigen, dass die 10°-Regel eine gute Orientierung bei chemischen Reaktionen ist. Im unteren Temperaturbereich wirkt eine Temperaturerhöhung  bezüglich der Erhöhung der Reaktionsgeschwindigkeit am effektivsten. Man kann das an der k von T Kurve sehen. Dort ist die Steigung der Funktion am stärksten. Ich danke für eure Aufmerksamkeit. Ich wünsche euch alles Gute. Auf Wiedersehen.  

Informationen zum Video
6 Kommentare
  1. 001

    Tut mir leid, ich weiß nicht, worum es geht. Gib bitte exakt an, um welche Aufgabe, welche Stelle es sich handelt.
    (Die Abschnitte dieses Videos sind durchnummeriert.)

    Alles Gute

    Von André Otto, vor 11 Monaten
  2. 001

    Entschuldigung: Es scheint, dass die Übung doch von mir ist. Ich komme aber nicht dazu, mich sofort damit zu beschäftigen.

    Morgen (Dienstag) vielleicht.

    Viele Grüße

    Von André Otto, vor 11 Monaten
  3. 001

    Hallo,

    die Übung wurde nicht von mir erstellt.

    Viele Grüße

    André Otto

    Von André Otto, vor 11 Monaten
  4. Default

    autsch: Wenn ich denselben Wert für ln (n), - wie Sie ihn haben, in der Zusatzaufgabe in den natürlichen Exponenten setze, um den Wert für n zu erhalten, dann erhalte ich 28.22, nicht 0.04. Was mache ich falsch? Der ln (28.22) ergibt wieder 3,34...

    Von Markus Isler, vor 11 Monaten
  5. 001

    Ich schaue jetzt bitte nicht rein. Nach meiner Erinnerung habe ich einen Bindestrich geschrieben, über und unter welchem jeweils ein Punkt ist.
    Im Übrigen kann man den Bindestrich auch als "2 minus 3" lesen.
    Gibt es auch Fragen zum Inhalt?
    Alles Gute

    Von André Otto, vor fast 2 Jahren
  1. Default

    Wird 2 bis 3 nicht mit einem Bindestrich statt einem geteilt-Zeichen geschrieben? Das würde doch dann "2 geteilt durch 3" heißen.

    Von Katze Lori, vor fast 2 Jahren
Mehr Kommentare