Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

I-Effekt und M-Effekt

Bereit für eine echte Prüfung?

Das Induktiver Effekt, Mesomerer Effekt, M Effekt, I Effekt Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 3.5 / 8 Bewertungen
Die Autor*innen
Avatar
André Otto
I-Effekt und M-Effekt
lernst du in der 11. Klasse - 12. Klasse - 13. Klasse

Grundlagen zum Thema I-Effekt und M-Effekt

Induktiver Effekt und mesomerer Effekt – Chemie

Mit sogenannten Effekten versucht man in der Chemie, einen günstigen Kompromiss zwischen qualitativen und quantitativen Aussagen zu finden.
Sicher hast du schon einmal etwas vom I-Effekt und vom M-Effekt gehört. Diese beiden Effekte gehören zu den polaren Effekten und werden stets ausgelöst durch funktionelle Gruppen. Allgemeines zum induktiven Effekt und die Grundlagen zum positiven mesomeren und negativen mesomeren Effekt wollen wir in diesem Text näher betrachten.

Was ist der induktive Effekt (I-Effekt)? – Definition

Der induktive Effekt – manchmal als Induktive-Hahn-Effekt oder HI-Effekt bezeichnet – wird auch als I-Effekt abgekürzt. Doch was ist der I-Effekt und was bewirkt der induktive Effekt?
Einfach erklärt werden durch den induktiven Effekt elektrische Ladungen verschoben. Der Induktionseffekt ist also ein ladungsverändernder Effekt. Chemische Verbindungen können dabei elektronenschiebend (+I-Effekt) – also ein positiver induktiver Effekt – oder elektronenziehend (-I-Effekt) – also ein negativer induktiver Effekt – sein. Doch wie entstehen der Minus-I-Effekt und der Plus-I-Effekt nun?

Ursache und Grundlage des induktiven Effekts

Welche Ursache hat der induktive Effekt? Der induktive Effekt tritt auf, wenn bei einer kovalenten Bindung eine Ungleichverteilung – also eine Asymmetrie – der Elektronen vorliegt. Wenn zwei Atome sich die Elektronen teilen, dann zieht das Atom mit der größeren Elektronegativität die Elektronen an sich. Du kannst die Elektronegativität im Periodensystem ablesen. Auf diese Weise hängen Elektronegativität und induktiver Effekt zusammen. Die Anziehung von Elektronen wird als -I-Effekt und die Bereitstellung von Elektronen als +I-Effekt bezeichnet.

Und welche Auswirkungen hat der induktive Effekt? Der Induktionseffekt bewirkt, dass Verbindungen einen Dipolcharakter ausbilden. Es liegt also innerhalb der Verbindung eine partiell positive ($\delta +$) und eine partiell negative Ladung ($\delta -$) vor.

Der induktive Effekt (I-Effekt) hat auch einen Einfluss auf die Säurestärke eines Moleküls. Wenn ein Molekül einen Substituenten besitzt, der stark elektronenziehend wirkt (-I-Effekt), kann ein Wasserstoffproton leichter abgespalten werden. Das Molekül hat also saure Eigenschaften. Bei einem Substituenten, der stark elektronenschiebend wirkt (+I-Effekt), führt das zu einer geringen Säurestärke.

Der induktive Effekt wirkt sich auf die Stabilität und Reaktivität eines Moleküls aus.

Stärke und Reichweite des Induktionseffekts

Der induktive Effekt kann sich über mehrere Bindungen in einem Molekül auswirken. In diesem Fall ist der I-Effekt besonders in der organischen Chemie von Bedeutung. Die Stärke des induktiven Effekts nimmt mit zunehmender Entfernung ab. Um die Stärke des induktiven Effekts von Atomen oder Atomgruppen zu vergleichen, vergleicht man die Elektronegativität des Substituenten mit der Elektronegativität des Wasserstoffs.

Substituenten des induktiven Effekts (I-Effekt) – Beispiele

Ausgelöst wird der I-Effekt durch unterschiedliche funktionelle Gruppen, die induktiv wirken. Dabei gibt es elektronenziehende oder elektronenschiebende Substituenten. Welchen induktiven Effekt Elemente oder Verbindungen haben, kannst du in der Tabelle sehen:

Elektronenschiebende Gruppen (+I-Effekt) Elektronenziehende Gruppen (-I-Effekt)
Alkylgruppe ($\ce{R-CH3})$ Fluor ($\ce{R-F})$
Methylgruppe ($\ce{R-CH3})$ Carboxylgruppe ($\ce{R-COOH})$
Ethylgruppe ($\ce{R-CH2-CH3})$ Nitrogruppe ($\ce{R-NO3})$
Isopropylgruppe ($\ce{R-C3H7})$ Cyanogruppe ($\ce{R-C\bond{3}N})$
Tertiärpropylgruppe ($\ce{R-C3H7})$ Acetlygruppe ($\ce{R-CCH3})$
Aldehydgruppe ($\ce{R-CHO})$

Normalerweise betrachtet man I-Effekte bei komplexeren Verbindungen. Dies ermöglicht, das Verhalten der Verbindungen zu analysieren.

Was versteht man unter Mesomerie? – Definition

Um zu verstehen, was der mesomere Effekt ist, sollte man zuerst wissen, was Mesomerie bedeutet. Wann kommt es zu einer Mesomerie? Bei der Mesomerie oder bei mesomeren Grenzstrukturen kann ein Molekül nicht durch eine einzige Strukturformel dargestellt werden. Und wie sieht eine solche mesomere Grenzstruktur aus? Die Verteilung der Elektronen liegt dabei in der Realität zwischen den verschiedenen Grenzstrukturen. Elektronen können sich in einem Molekül verschieben. Sie sind nicht genau lokalisierbar. Durch diese Verschiebung verändern sich auch die Bindungsverhältnisse, die durch die Grenzstrukturen dargestellt werden. Je mehr Grenzstrukturen ein Molekül besitzt, desto stabiler ist es.

Was ist der mesomere Effekt (M-Effekt)? – Definition

Im Unterschied zum induktiven Effekt kommt die Wirkung des M-Effekts nur in konjugierten Systemen zum Tragen. Substituenten können also nur dann einen M-Effekt ausüben, wenn sie Elektronendichte zur Verfügung stellen oder entziehen können. Die Moleküle müssen also über ungesättigte Bindungen oder über Atome mit freien Elektronenpaaren verfügen.
Nach einer Substitutionsreaktion an Molekülen, die eine Mesomerie enthalten, kann es zum Beispiel passieren, dass der Substituent an der Mesomerie teilnehmen kann – das mesomere System wird vergrößert. In diesem Fall bewirkte der Substituent einen mesomeren Effekt.

Mesomere Effekte bestimmen, an welcher Position eine weitere Reaktion wahrscheinlich ablaufen wird. Es ergeben sich außerdem mehr mesomere Grenzformeln, wodurch das Molekül stabilisiert wird.

Plus-M-Effekt und Minus-M-Effekt

Einfach erklärt kommt es beim mesomeren Effekt (M-Effekt) zur Delokalisierung oder Erweiterung von Orbitalen. Ein Molekül ist umso stabiler, je mehr mesomere Grenzstrukturen dieses hat. Dabei wird zwischen dem +M- und dem -M-Effekt unterschieden. Und wann liegen der +M- und wann der -M-Effekt vor? Der positive mesomere Effekt (+M-Effekt) tritt auf, wenn der Substituent dem System mehr Elektronen zugibt und dadurch die Elektronendichte erhöht wird. Dabei hat der Substituent ein freies Elektronenpaar und eine elektrophile Zweitsubstitution wird begünstigt.

Beispiele zu mesomerer Effekt Anilin

Dagegen handelt es sich um einen negativen mesomeren Effekt (-M-Effekt), wenn der Substituent durch die Doppelbindung dem System Elektronen entzieht. Die Elektronendichte wird geringer und die elektrophile Zweitsubstitution wird erschwert.

Beispiele zu mesomeren Effekt am Beispiel von Nitrobenzol Mesomerie

Substituenten mit positivem und negativem mesomeren Effekt – Beispiele

Doch welche Substituenten üben einen -M- und einen +M-Effekt aus? Welchen mesomeren Effekt üben Carbonsäuren oder Aminogruppen $(\ce{NH3+})$ aus? Beispiele für Substituenten und Gruppen mit einem +M- und einem -M-Effekt sind in der Tabelle der mesomeren Effekte aufgelistet:

Substituenten mit +M-Effekt Substituenten mit -M-Effekt
Sauerstoffion $(\ce{R-O-})$ Ester $(\ce{R-COOR})$
Aminogruppe $(\ce{R-NH2})$ Carboxygruppe $(\ce{R-COOH})$
Stickstoff $(\ce{R-NR2})$ Cyanogruppe $(\ce{R-CN})$
Hydroxidion d$(\ce{R-OH})$ Stickstoffdioxid $(\ce{R-NO2})$
Propensäure $(\ce{R-CH=CH-COOH})$ Aminogruppe $(\ce{R-NH3+})$
Brom $(\ce{R-Br})$
Chlor $(\ce{R-Cl})$
Iod $(\ce{R-I})$

Zusammenhang zwischen I- und M-Effekt

Polare Effekte kann man in induktive und mesomere Effekte einteilen. Es gibt aber keine absolute Methode, um sie in einer Verbindung exakt voneinander trennen zu können. Trotzdem geht man davon aus, dass man den polaren Effekt als Summe beider Effekte ansehen kann. Die Wirkung des mesomeren Effekts ist dabei in der Regel größer als die des induktiven Effekts. Die Abschätzung des Gesamteffekts ist einfach, wenn beide Teileffekte das gleiche Vorzeichen haben. Sind die Vorzeichen entgegengerichtet, so hat der Gesamteffekt das Vorzeichen des mesomeren Effekts.

Dieses Video

Dieses Video erklärt die Begriffe induktiver und mesomerer Effekt. Du erfährst, was die -I/+I-Effekte und die -M/+M-Effekte sind. Es wird gezeigt, welchen Einfluss diese auf die Reaktivität von Substanzen haben. Anhand von vielen Beispielen (Änderung der Acidität von Säuren, Farbigkeit von Nitroanilin) werden der I- und der M-Effekt erklärt.

Im Anschluss an das Video und diesen Text findest du Übungsaufgaben, um dein erlerntes Wissen zu überprüfen. Viel Spaß!

Teste dein Wissen zum Thema Induktiver Effekt, Mesomerer Effekt, M Effekt, I Effekt!

1.215.161 Schülerinnen und Schüler haben bereits unsere Übungen absolviert. Direktes Feedback, klare Fortschritte: Finde jetzt heraus, wo du stehst!

Vorschaubild einer Übung

Transkript I-Effekt und M-Effekt

Guten Tag und herzlich willkommen Dieses Video heißt I-Effekt und M-Effekt An Vorkenntnissen solltet Ihr die organische Chemie bis Veresterung und Verseifung gut beherrschen. Im Video möchte ich Euch die Möglichkeiten und Grenzen der Benutzung des Konzepts beider Effekte aufzeigen

Der Film besteht aus 9 Abschnitten: 1. Wozu Effekte? 2. Effekthascherei 3. Der I-Effekt 4. Beispiele für den I-Effekt 5. Der M-Effekt 6. Beispiele für den M-Effekt 7. Zusammenhang zwischen beiden Effekten 8. Grenzen des Konzepts und 9. Zusammenfassung

  1. Wozu Effekte? Obwohl es manchmal nicht so scheint, lebt die Chemie, besonders die organische von der Beobachtung. Und jedes Mal stellt man sich die frage, wie lässt sich die Beobachtung erklären? Und wie es sich zu einer ordentlichen Wissenschaft gehört möchte man für jede chemischen Reaktion eine Erklärung bekommen. Um die Erklärung zu verstehen, sollte diese einfach, klar und verständlich sein. In der theoretischen Chemie gibt es ein Verfahren, das ich als Mercedes Benz der theoretischen Chemie bezeichnen möchte. Das ist die Schrödinger-Gleichung und ihre Anwendung. Eine hervorragende Gleichung die für sämtliche chemischen Prozesse prinzipiell eine Erklärung liefern kann und diese sogar quantitativ.  Um jedoch qualitativ gute Ergebnisse  zu erzielen, benötigt man sehr viel Zeit, Geld und leistungsfähige Computer. Das ist natürlich alles andere als ersprießlich. Man benötigt für die schnelle Voraussage einfachere Methoden. Daher geht man von der quantitativen  Beurteilung zur qualitativen über. Je mehr qualitative Aussage eine Beurteilung liefert um so anschaulicher wird sie. Das ist schön. Allerdings ist der Grad der Exaktheit bei rein qualitativen Aussagen nicht sehr hoch. Das ist nun weniger schön. Mit den Effekten versuchen wir einen günstigen Kompromiss zu finden. Wir benötigen sie für die schnelle und zuverlässigen Orientierung. Die Verallgemeinerung des qualitativen Zusammenhangs zwischen der Struktur und den physikalischen wie chemischen Eigenschaften von Stoffen nennt man Effekt. Wir wollen zwei wichtige Effekte besprechen, den I-Effekt und den M-Effekt. Diese Effekte stehen im Zusammenhang und werden stets ausgelöst durch funktionelle Gruppen. Beispiele sind die Nitrogruppe, die Aminogruppe, die Carboxygruppe und die Methylgruppe.

  2. Effekthascherei Effekte sind gut und nützlich ich möchte aber vor zu hohen Erwartungen warnen. Es gibt starke Effekt, auch schwache Effekte spielen in der Chemie eine Rolle. Häufig kommt es zu Überlagerungen von Effekten. Und schließlich gibt es Effekte an deren Existenz gezweifelt wird. Effekte sind ein Konzept, das aus dem Experiment gewonnen wird. Das ist die primäre Richtung. Natürlich kann man mit Kenntnis der Effekte wieder auf das Experiment einwirken. In der Chemie, speziell der organischen gibt es eine ganze reihe von Effekten. Zunächst haben wir die polaren Effekte, das heißt die elektronischen. Andere Effekte könnten zum Beispiel sterische sein. Die polaren Effekte werden unterteilt in den induktiven Effekt und  den mesomeren Effekt. Beide sind die wichtigesten Effekte der organischen Chemie.

  3. Der I-Effekt. Der I-Effekt wird ausgelöst durch die Wirkung funktioneller Gruppen. Eine Möglichkeit ist, dass diese Gruppen Elektronen anziehen, der entgegengesetzte Fall ist die Bereitstellung von Elektronen. Elektronen anziehend sind das Fluratom, die Carboxygruppe, die Nitrogruppe, die Cyanogruppe, die Acetylgruppe und die Aldehydgruppe. Anziehung von Elektronen wird als -I-Effekt bezeichnet. Bereitstellung von Elektronen erfolgt durch Alcylgruppen, die Metyhlgruppe, die Ethylgruppe, die Isopropylgruppe und die Tertiärpropylgruppe. Dieser Effekt wird als +I-Effekt bezeichnet. Eine gewisse Analogie zur Elektronegativität ist zu erkennen. Interessant ist die Wirkung des I-Effekts entlang von Alkylketten. Nehmen wir eine Alkansäure und betrachten den -I-Effekt. Es kommt zu einer schnellen Dämpfung in gesättigte Verbindungen.

  4. Beispiele für den I-Effekt Mit der freien Standarddeprotonierungsenergie kann man gut den I-Effekt erkennen. Betrachten wir die Deprotonierung von Methan. Die benötigte Energie beträgt 1710 kJ/mol. Tauschen wir das Wasserstoffatom H gegen die elektronenziehende Cyanogruppe CN so erhalten wir einen Wert von 1530 kJ/mol. Noch stärker zieht die Nitrogruppe. Wir erhalten 1470 kJ/mol. Die Protonen werden leichter abgegeben, das wird bedingt durch den -I-Effekt. Die elektronenziehende Wirkung erleichtert die Abspaltung des Protons.

  5. Veränderung der Acidität Wir wollen nun Essigsäure und einige substituierende Essigsäuren betrachten. Essigsäure hat einen pKs Wert von 4,75, Propionsäure hingegen von 4,87. Durch die Methylgruppe CH3 werden die Elektronen in das System hineingeschoben. Bromessigsäure hingegen hat einen pKs Wert von 2,69. Das Bromatom zieht Elektronen aus dem System ab. Die Acidität steigt. Der erste Substituent liefert einen +I-Effekt der zweite einen -I-Effekt. +I vermindert die Acidität ,-I erhöht sie. Als letztes ein Beispiel zu Dämpfung entlang der Kohlenstoffkette. Wir schauen uns die einfach, zweifach und dreifach chlorsubstituierte Essigsäuremoleküle an. Schauen wir uns die Acidität von Chloressigsäure an, pKs=2,85. Wird das Chloratom durch eine Methylengruppe CH2 von der Carboxygruppe entfernt, so vergrößert sich der pKs Wert auf 3,98. Eine weitere Methylengruppe verringert die Acidität noch mehr, pKs=4,52. Wir haben uns der Acidität der Essigsäure schon stark angenähert. Das heißt, es kommt von oben nach unten zur Dämpfung. Der Effekt nimmt entlang der Kette schnell ab.

  6. Der M-Effekt Im Unterschied zum I-Effekt kommt seine Wirkung nur in konjugierten Systemen zum Tragen. Eine Aminogruppe NH2 speist ihr Elektronenpaar in das konjugierte System ein. Das letzte Kohlenstoffatom erhält eine negative Ladung. Am Stickstoffatom bildet sich eine positive Ladung heraus. Man erhält mesomere Grenzstrukturen. Im Unterschied zum I-Effekt zeigt der M-Effekt keine Dämpfung. Die Aminogruppe speist Elektronen in das System ein.  Wir sprechen hier vom +M-Effekt. Betrachten wir nun die Wirkung einer Nitrogruppe auf ein konjugiertes System. Hier wird ein Elektronenpaar in Richtung Nitrogruppe abgezogen. Es entstehen mesomere Grenzstrukturen. Auch hier erfolgt keine Dämpfung entlang des konjugierten Systems. Durch die Nitrogruppe verliert das System Elektronen, man sprich hier vom -M-Effekt

  7. Beispiele für den M-Effekt Der M-Effekt kann zur Verminderung der Polarität einer Verbindung führen. Im Chlorbenzolmolekül trifft man den M-Effekt an, es entstehen Grenzstrukturen. Durch die die negative Ladung am Chloratom über das gesamte System verteilt wird. Chlorbenzol wird dadurch unpolar. Nur 0,5g lösen sich in einem Liter Wasser. Im Monochlormethanmolekül beobachtet man den +I Effekt nicht. Das Molekül ist polarer. 5g lösen sich in einem Liter Wasser. Die Löslichkeit von Chlorbenzol in Wasser wird vermindert. Da unpolares im polaren schlecht löslich ist. Der M-Effekt beeinflusst stark die Farbigkeit chemischer Verbindungen. Eindrucksvolle Beispiele dafür sind 4 Nitroanilin und Methylorange.

  8. Zusammenhang zwischen beiden Effekten Wir haben gelernt das man die polaren Effekte in induktiven und mesomeren unterteilen kann. Es gibt aber keine absolute Methode um sie in der Verbindung exakt voneinander zu trennen. Trotzdem geht man davon aus, dass man den polaren Effekt als Summe beider Effekte ansehen kann. Dafür spricht eine jahrelange Erfahrung. Außerdem ist die Wirkung des mesomeren Effektes in der Regel größer als die des Induktiven. Die Abschätzung des Gesamteffektes ist einfach, wenn beide Teileffekte das gleiche Vorzeichen haben, so wie bei der Nitrogruppe. Sind die Vorzeichen entgegengerichtet, so hat der somarische Effekt das Vorzeichen des mesomeren Effektes so wie bei der Hydroxygruppe.

  9. Grenzen des Konzepts Als Erstes sind beide Effekte bei radikalischen Reaktionen nicht anwendbar. Bei Molekülen mit wenig funktionellen Gruppen bedarf es anderer Herangehensweisen. I und M-Effekt sind in der Regel nicht quantifizierbar. Ausnahmen sind die Gleichungen von Hammet und Taft.

  10. Zusammenfassung. Polare Effekte sind unterteilbar in I und M-Effekt. Der I-Effekt wirkt sowohl über Alcylreste als auch über Ketten konjugierter Verbindungen. Der M-Effekt wirkt nur in konjugierten Systemen. Der I-Effekt erfährt entlang der Kette eine Dämpfung, der M-Effekt entlang des konjugierten Systems nicht. +I-Effekt zeigen Alkyreste. -I-Effekt weisen die Nitrogruppe, die Cyanogruppe und die Carboxygruppe auf. +M-Effekt zeigen die Hydroxygruppe, die Aminogruppe und die Dimethylaminogruppe. -M-Effekt weisen die Nitrogruppe, die Cyanogruppe und die Carboxygruppe auf.

Und leider wieder Schluss. Ich wünsche Euch alles Gute und viel Erfolg.

2 Kommentare
2 Kommentare
  1. Dazu gibt es Videos. Mesomerie, Konjugation, Farbstoffe u. ä.

    Von André Otto, vor fast 9 Jahren
  2. Schade, dass nichts zum Einfluss des M-Effekts auf die Farbigkeit gesagt wurde. Hätte mir weitergeholfen.

    Von Merabell A., vor fast 9 Jahren

I-Effekt und M-Effekt Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video I-Effekt und M-Effekt kannst du es wiederholen und üben.
  • Erkläre die Effekte in der organischen Chemie.

    Tipps

    Polar bedeutet, dass die Elektronen zu einem Bindungspartner verschoben sind.

    Lösung

    Die Zusammenhänge zwischen Struktur und Eigenschaften chemischer Verbindungen lassen sich durch Effekte verallgemeinern. Es gibt eine ganze Reihe von Effekte, die man betrachten kann. Polare Effekte sind Effekte, die durch Elektronenverteilung im Molekül verursacht werden. Dazu gehören der induktive und der mesomere Effekt. Diese Effekte werden durch funktionelle Gruppen ausgelöst.

  • Bestimme, ob folgende funktionelle Gruppen einen +I- oder -I-Effekt auslösen.

    Tipps

    Ein negativer induktiver Effekt bedeutet, dass die Gruppe die Elektronen aus dem System zieht.

    Lösung

    Funktionelle Gruppen können einmal Elektronen aus einem System anziehen und einmal hineinschieben. Wenn die Elektronen von der funktionellen Gruppe angezogen werden, spricht man vom -I-Effekt. Es wird also ein negativer induktiver Effekt ausgeübt. Folgende funktionelle Gruppen üben einen -I-Effekt aus:

    • Halogene
    • Carbonyl- und Carboxylgruppen
    • Nitrogruppe
    • Cyanogruppe
    Stellen Gruppen Elektronen bereit, üben sie einen positiven induktiven Effekt aus. Dazu gehören Alkylreste und verzweigte Alkylreste.

  • Ermittle die Verbindungen, auf die ein mesomerer Effekt wirkt.

    Tipps

    Der mesomere Effekt tritt auf, wenn es mesomere Grenzstrukturen gibt.

    Der mesomere Effekt tritt nur in konjugierten Systemen auf.

    Lösung

    Um die Polarität und damit die Elektronenverteilung in einem Molekül zu beeinflussen, werden funktionelle Gruppen benötigt. Der mesomere Effekt tritt außerdem nur bei konjugierten Systemen auf. Diese Systeme weisen zwei oder mehr Doppelbindungen auf, die jeweils durch eine Einfachbindung voneinander getrennt sind. Dadurch weist das Molekül verschiedene mesomere Grenzstrukturen auf. Die Doppelbindungen können sich im Molekül verschieben, wodurch sich Ladungen herausbilden und das Molekül polar wird.

    Die Aminogruppe $-NH_2$ übt dabei einen positiven mesomeren Effekt aus, weil sie die Elektronen des freien Elektronenpaares am Stickstoff in das Molekül schiebt.

  • Erkläre den polaren Effekt im Benzaldehyd.

    Tipps

    Zeichne dir mögliche Grenzstrukturen auf und überlege, was mit der Elektronenverteilung im Ring passiert.

    Lösung

    Die Carbonylgruppe am Ring übt einen negativen mesomeren Effekt aus. Da der Ring ein konjugiertes System ist, bilden sich verschiedene mesomere Grenzstrukturen (Abb. rechts). Die Carbonylgruppe zieht dabei die Elektronen aus dem Ring. Man spricht auch von einer Desaktivierung des Ringes. Durch die Verringerung der Elektronendichte im Ring wird ein elektrophiler Angriff am Ring unwahrscheinlicher.

  • Benenne folgende funktionelle Gruppen.

    Tipps

    Manchmal lassen sich die Namen von ähnlichen, anderen Verbindungen ableiten:

    • ${NO_3}^-$ Nitrationen
    • $CN^-$ Cyanidionen

    Lösung

    Um die organische Chemie gut verstehen zu können, ist es wichtig, sich gut in der Nomenklatur auszukennen und die Namen der funktionellen Gruppen zu beherrschen. Dabei lässt sich der Name einer organischen Gruppe auch von anionischen Salzen ableiten:

    • ${NO_3}^-$ Nitrationen
    • $CN^-$ Cyanidionen
    • $OH^-$ Hydroxidionen
    • ${NH_4}^+$ Ammoniumionen

  • Bestimme die Säurestärke der Carbonsäurederivate.

    Tipps

    Die Säurestärke ist ein Maß für die Fähigkeit, in Lösung zu dissoziieren.

    $ R-COOH \rightleftharpoons R-COO^- + H^+$

    Je polarer die Bindung, desto leichter lässt sich die Säure deprotonieren.

    Lösung

    Essigsäure ist eine organische Säure, die in wässriger Lösung nicht vollständig dissoziiert. Die Fähigkeit deprotoniert zu werden, was ein Maß für die Säurestärke ist, kann durch eine funktionelle Gruppe beeinflusst werden.

    Die Halogene üben einen negativen induktiven Effekt -I Effekt aus und ziehen somit Elektronen aus dem System. Das Proton kann dann leichter abgegeben werden. Ein substituiertes Chloratom erhöht also die Säurestärke. Befindet sich allerdings noch eine Methylgruppe zusätzlich zwischen Carboxylgruppe und Chlormethylgruppe, wird der Effekt über die zusätzliche Einfachbindung geschwächt, was wiederum einen mindernden Effekt auf die Säurestärke hat.

    Noch stärker wird die Säure, wenn nicht nur ein Chloratom, sondern gleich mehrere substituiert sind. Eine weitere Steigerung der Säurestärke erhalten wir, wenn anstatt Chlor Fluoratme substituiert sind. Durch ihre größere Elektronegativität üben sie einen stärkeren induktiven Effekt aus.