Advent, Advent, 1 Monat weihnachtliche Laufzeit geschenkt.

Nicht bis zur Bescherung warten, Aktion nur gültig bis zum 18.12.2016!

Textversion des Videos

Transkript Aromatizitätskriterien

Hallo, liebe Chemieinteressierte.

Hier ist wieder André mit einem Video über Aromatizitätskriterien. Welche Voraussetzungen solltet Ihr erfüllen? Zum Ersten solltet Ihr gut darüber informiert sein, was Benzol ist. Als Zweites solltet Ihr gut wissen, was die Hückelregel ist. Und drittens solltet Ihr bereits einige Aromaten, außer dem Benzol, kennen. Zu jedem dieser Themen gibt es bereits jeweils 1 Video. Solltet Ihr Probleme haben, oder unsicher sein, schaut euch bitte diese Videos vorher an. Nun wollen wir uns einmal einige Verbindungen anschauen, von denen wir abschätzen wollen, ob es sich um Aromaten handelt.

Als 1. hätten wir den Vierring, Cyclobutadien. Es folgt Benzol, dann ein Ion, das ein Dreiring bildet. Darauf folgt die einfach durch Doppelbindung dargestellte Verbindung Ethen. Dann Hexatrien. Und als Letztes, eine relativ komplexe, konjugierte Verbindung, die den Namen Pyren trägt.

Welchen Bedingungen sollte ein Aromat genügen? Zunächst einmal sollte er Doppelbindungen enthalten. Von diesen Doppelbindungen müssen mehrere im Molekül enthalten sein. Da gibt es 3 Fälle: Die Doppelbindungen könnten weit entfernt sein, sie könnten aufeinanderfolgen oder sie könnten abwechseln. Uns interessiert nur der 3. Fall. Die sogenannten konjugierten, ungesättigten Kohlenwasserstoffe. Die Kohlenstoffatome der konjugierten Verbindungen sind sp² hybridisiert. Sehr wohl fühlt sich die Verbindung, wenn die Bindungswinkel ccc 120° betragen. Unbedingt notwendig ist, dass man mindestens 2 mesomere Grenzstrukturen, wie hier dargestellt im Cyclobutadien, aufschreiben kann. Der Begriff Aromatizität ist nur sinnvoll für Ringverbindungen. Wir haben bereits gesehen, dass mitunter die Hückelregel von Nutzen seien kann. Letztendlich geht es darum zu zeigen, dass das betrachtete System relativ stabil ist, also aromatisch.

Und jetzt beginnen eigentlich erst die Probleme, zum Beispiel ist auf das große, aus mehreren Ringen bestehende Molekül, die Hückelregel nicht anwendbar. Für den Vierring Cyclobutadien kann man 2 mesomere Grenzformen zeichnen, doch nach der Hückeregel ist er eine antiaromatische Verbindung. Hexatrien ist kein Ring und daher ist der Begriff der Aromatizität für diese Verbindung sinnlos. Von ursprünglich 6 Verbindungen mit Doppelbindungen sind nur noch 3 Kandidaten als aromatische Verbindung übrig geblieben. Und es handelt sich hier tatsächlich um Aromaten. So, und nun noch schnell die beiden mesomeren Grenzstrukturen des Cyclobutadiens entfernt. Dann haben wir die Seite praktisch von Antiaromatizität befreit.

Der ccc-Bindungswinkel muss nicht immer 120° betragen. Ein Beispiel dafür ist das Cyclopropenylkation, hier beträgt der Winkel 60°.

Häufig wird Planarität als Aromatizitätskriterium angegeben, doch das ist inkorrekt. Planarität ist eher eine Folge der Aromatizität, als ihre Bedingung. Ist es mir gelungen, Euch etwas zu verwirren? Das ist mein Ziel gewesen, denn ich wollte Euch zeigen, dass es nicht einfach ist, ein universelles Aromatizitätskriterium zu finden.

Ein sehr gutes und ein recht universelles Kriterium für die Bewertung von Aromatizität ist die Betrachtung der Energetik von Ringöffnungsreaktionen. Bei der Ringöffnung von Benzol bildet sich Hexatrien. Das Edukt hat eine Bildungsenthalpie von 83kJ/mol. Der entsprechende Wert für das Produkt beträgt 168 kJ/mol. Daraus ergibt sich eine Reaktionsenthalpie von +85kJ/mol. Das bedeutet, dass bei dieser Reaktion Energie aufgenommen wird. Schauen wir uns nun die entsprechende Ringöffnung für Cyclobutadien an. Cyclobutadien hat eine Bildungsenthalpie von 430kJ/mol. Der geöffnete Ring hat einen entsprechenden Wert von 110kJ/mol. Wir erhalten somit als Reaktionsenthalpie -320kJ/mol, d.h., es wird Energie frei. Cyclobutadien fühlt sich unwohl, es möchte seinen Ring öffnen. Es ist energetisch ungünstig, daher ist es antiaromatisch. Das Benzolmolekül ist relativ stabil. Eine Ringöffnung führt zu einer chemischen Verbindung, die energetisch ungünstiger ist - daher ist Benzol eine aromatische Verbindung.

Schauen wir uns nun die Ringöffnung von Naphtalin an. Bei dieser Reaktion entsteht Benzol und Butadien. Das Edukt Naphtalin hat eine Bildungsenthalpie von 150kJ/mol. Die entsprechenden Werte für Benzol und Butadien, betragen 83 bzw. 110kJ/mol. Man erhält als Reaktionsenthalpie einen Wert von +43kJ/mol. Ringöffnung führt bei Naphtalin zur Energiezunahme. Daher handelt es sich um eine aromatische Verbindung.

Als Letztes die Ringöffnung eines Moleküls, dass aus einem Achtring und einem Vierring besteht. Die Bildungsenthalpien betragen entsprechend: 514, 168 und 430kJ/mol. Somit beträgt die Reaktionsenthalpie -236kJ/mol. Die Reaktion läuft daher unter sehr großer Energieabgabe ab. Das bedeutet aber, dass das Ausgangsmolekül ein Antiaromat ist, da es sehr energiereich ist. Somit kann ein wichtiges, universelles Aromatizitätskriterium formuliert werden: Konjugierte Ringe oder Ringsysteme, die bei Ringöffnung einen Energiezuwachs erfahren, bezeichnet man als aromatisch. Sinkt die Energie hingegen, spricht man von antiaromatischen Systemen. Grafisch veranschaulicht bedeutet das, das Benzol, bei dem es sich um einen Aromaten handelt, bei der Ringöffnung eine Energieerhöhung erfährt. Umgekehrt wird bei der Ringöffnung des Cyclobutadien, eines Antiaromaten, bei der Ringöffnung Energie frei.

Nun sei Euch noch einmal die Hückelregel in Erinnerung gerufen. Sie besagt, dass bei monocyclischen Systemen, die Pi-konjugierte Elektronenpaare besitzen, bei 4n+2 Elektronen, es sich um ein aromatisches System handelt. Bei 4n-Elektronen ist das entsprechende System antiaromatisch. Aromatische Systeme für n=1 sind Benzol, Pyridin, das Cyclobutadienylanion und Pyrol. Ein Beispiel für ein antiaromatisches System für n=1 ist Cyclobutadien. Und nun möchte ich noch einmal gebetsmühlenartig wiederholen. Die 4n+2-Regel von Hückel gilt nur für monocyclische Systeme.

Als 3. Aromatizitätskriterium möchte ich Euch das sogenannte Kriterium der Kekulé-Strukturen vorstellen. Das bedeutet, anhand der Zahl der mesomeren Grenzstrukturen, wird die Stabilität eines Systems betrachtet. Nehmen wir als Beispiel Benzol und Cyclobutadien. Für jede der beiden Verbindungen lassen sich 2 mesomere Grenzstrukturen, d. h. also 2 Kekulé-Strukturen, bestimmen. Benzol ist aromatisch, Cyclobutadien hingegen antiaromatisch, d. h. die Methode der Kekulé-Strukturen versagt hier. Nun wollen wir uns einmal anschauen, was die Kekulé-Strukturen bei etwas größeren Systemen leisten. Betrachten wir zunächst das Molekül des Naphtalins. Neben der dargestellten Struktur kann man noch 2 weitere Grenzstrukturen formulieren. Im Ganzen besitzt Naphtalin 3 Kekulé-Strukturen. Die gleiche Betrachtung führen wir mit einer isomeren Verbindung durch, dem Azulen. Diese Verbindung besteht aus einem Fünfring und einem Siebenring. Für Azulen kann man nur 2 mesomere Grenzstrukturen formulieren. Beide Verbindungen sind aromatisch. Bedeutet das, dass die Aussage über Kekulé-Strukturen umsonst war? Das ist durchaus nicht der Fall. Die Schlussfolgerung aus unseren Ergebnissen ist, Naphtalin ist stabiler als Azulen. Das Experiment bestätigt die theoretische Vorhersage. Naphtalin hat eine Bildungsenthalpie von 150kJ/mol, während Azulen einen Wert von 300kJ/mol aufweist.

Zum Abschluss wollen wir die 3 Aromatizitätskriterien miteinander vergleichen: Ringöffnung, Hückelregel und Kekulé-Strukturen. Ringöffnung und Kekulé-Strukturen sind universell einsetzbar. Die Hückelregel kann nur für Monocyclen angewendet werden. Für die Verwendung der Ringöffnung sind thermodynamische Werte notwendig, sonst kann man keine vernünftigen Ergebnisse erzielen. Die Hückelregel ist bei großen Zyklen unzuverlässig. Die Kekulé-Struktur weist den Nachteil auf, dass sie bei kleinen Systemen keine zuverlässigen Ergebnisse zeigt. Und nun noch eine ganz wichtige Schlussbemerkung: Das Konzept der Aromatizität ist ein Hilfsmittel für die Abschätzung der relativen Energie eines konjugierten Rings oder Ringsystems. Es ist keine physikalische Größe!

So, das war es wieder für heute. Bleibt weiterhin so schön chemieinteressiert. Tschüss!

Informationen zum Video
16 Kommentare
  1. 001

    110 kJ/mol ist der richtige Wert für die Bildungsenthalpie von Butadien. Bei 7 Minuten + wurde falsch aufgelegt. Vielen Dank.
    Alles Gute

    Von André Otto, vor etwa 6 Stunden
  2. Bianka

    Entschuldigung, da ist uns ein kleiner Fehler unterlaufen. Vielen Dank für das aufmerksame Schauen, der Fehler wird schnellstmöglich korrigiert.

    Von Bianca Blankschein, vor etwa 6 Stunden
  3. Default

    Es ist ein Fehler enthalten. Bildungsenthalpie von Butadien ist zunächst mit 110 und später mit 430 angegeben. Bei der Ringöffnung müssen auch 110 angegben werden, dann stimmt auch die Rechnung mit der frei werdenden Energie.

    Von Birgit R., vor etwa 15 Stunden
  4. 001

    Nach 5 1/2 Jahren habe ich mir das Video nochmal angeschaut. Es ist inhaltlich völlig korrekt. Kleiner Fehler bei 9+ Minuten, richtig: "Cyclopentadienyl". Das ändert aber nichts an der Hauptaussage.
    Zwei Dinge:
    1. Die Anwendbarkeit der Hückel - Regel (Monocyclen !) muss wieder und wieder wiederholt werden. Denn dazu gibt es in der Lehre die dollsten Stilblüten. Übrigens wird es bei Wikipedia korrekt dargestellt.

    2. Die Übersicht am Ende könnte sicher noch verbessert werden. Allerdings ist das so ziemlich unwesentlich. Denn ein tieferes Verständnis über die Aromatizität erhält man erst bei intensiver Beschäftigung mit dem Thema.

    Alles Gute

    Von André Otto, vor etwa einem Jahr
  5. 001

    Experimentelle Werte oder aus Rechnungen der Quantenchemie. Die QC hat in den beiden letzten Jahrzehnten riesige Fortschritte gemacht.
    Alles Gute

    Von André Otto, vor mehr als 3 Jahren
  1. Default

    woher erhalte ich die werte der thermodynamik um die ringöffnung eines moleküls einschätzen zu können ? aus der literatur??

    Von Deita1982, vor mehr als 3 Jahren
  2. 001

    1. Die Doppelbindungen sind sehr wohl konjugiert. "Konjugiert" bedeutet abwechselnd, auch wenn die Struktur der Bindungen "gebogen" ist.

    2. Die Hückelregel wird gerade nicht "erfüllt": 16 = 4n + 2 n ist nicht natürlich

    3. Die Hückelregel ist NUR AUF EINFACHRINGE (MONOCYLEN) anwendbar !!!!!!!!!!

    4. Pyren ist gerade ein Beispiel dafür, dass die Hückelregel NICHT AUF POLYCYLEN angewendet werden darf.

    Vielleicht ist es jetzt klarer.

    Alles Gute

    André

    Von André Otto, vor fast 5 Jahren
  3. Default

    Das Molekül mit den vier Ringen am Anfang ist doch gar kein Aromat? Die Doppelbindungen sind nicht konjugiert auch wenn die Hückelregel zutrifft.

    Von 0bine0, vor fast 5 Jahren
  4. 001

    Entschuldige bitte die Verzögerung. Unsere Technik hat die Frageseite zeitweilig ausgebaut.

    Ich habe bewusst die Energieart nicht genannt. Aber Reaktionsenthalpien (aus den Standardbildungsenthalpien) sind in Ordnung.

    Wie gesagt: Es kommt hier auf das Prinzip an.

    Wenn du aufmerksam das Video geschaut hast, so hast du sicher festgestellt., dass die Ringöffnung noch einen "Ringöffner" (Wasserstoff oder Alkan braucht). Aber: qualitativ ändert sich nichts.

    Ich wollte u. a. mit dieser kleinen Reihe von Videos zeigen, dass die 4n+2 -Regel von Hückel NUR für MONOCYCLISCHE SYSTEME (einfache Ringe) gilt. Wenn man sich die Originalarbeiten anschaut., so hat er mit der Hückel-Methode eben das gezeigt. Nicht mehr, aber auch nicht weniger.

    Anders ausgedrückt. Die 4n+2-Regel auf Verbindungen wie Naphthalin, Pyren, Chrysen oder andere polykondensierte Aromaten anzuwenden, ist NICHT ZULÄSSIG. Trotzdem tun das einige Profs.

    Alles Gute

    André

    Von André Otto, vor etwa 5 Jahren
  5. Default

    ok danke,
    eine frage: du schreibst hier von energiezuwachs der geöffneten verbindung. welche nergie ist damit gemeint? standardbildungsenthalpie?

    Von Danielschumacher82, vor etwa 5 Jahren
  6. 001

    Das nun leider nicht. Die Ozonolyse knackt alle Doppelbindungen und führt an den Bindungsstellen Aldehyd-Gruppen ein. Du erhältst somit drei Moleküle Dialdehyd (C2-Einheiten). Zugegeben, das ist keine richtige Ringöffnung, eher eine Spaltung

    Benzol praktisch in einem Schritt zu einer C6-Einheit zu öffnen, halte ich für vermessen.

    Es ist aber möglich, durch Hydrierung Cyclohexen zu erhalten. Und das KANN man mit der Ozonolyse spalten (Ringöffnung). Man erhält einen C6-1,2-Dialdehyd.
    Wermutstropfen: Den Mechanismus für die Hydrierung muss man suchen, wenn er überhaupt bekannt ist. (Ozonolyse ist bekannt).

    Was nun der liebe Prof im Hinterkopf hatte, weiß ich nicht (---> Konsultation)

    Beste Grüße

    André

    Von André Otto, vor etwa 5 Jahren
  7. Default

    gut danke
    erhalte ich dann bei der ozonolyse als produkte: dialdehyd-hexa-2-4-trien?

    Von Danielschumacher82, vor etwa 5 Jahren
  8. 001

    Lieber Daniel,

    folgende Vorschläge:
    1. Katalytische Hydrierung bis zum Cyclohexan und weiter bis zum n-Hexan. Allerdings sieht es da mit einem „Mechanismus“ mau aus.
    2. Sinnvoller erscheint mir die Ozonolyse. Dazu gibt es auch einen kleinen Mechanismus (wikipedia, Fachbücher). Benzol fungiert hier wie ein Trien, es entsteht der Dialdehyd Glyoxal.

    Vielleicht ist dein Prof damit zufrieden.

    Alles Gute

    André

    Von André Otto, vor etwa 5 Jahren
  9. Default

    tja...ich wurde bei meiner letzten prüfung (die ich übrigens verhauen habe) gefragt, wie ich denn den ring beim benzol öffnen kann - jetzt muss ich da nochmal durch und da ich immer noch nicht erklären kann, wie ein ringöffnungsmechanismus am aromaten abläuft, kann ich dieses aromatizitätskriterium in der prüfung nicht aufzählen.

    Von Danielschumacher82, vor etwa 5 Jahren
  10. 001

    Lieber Daniel,

    eine "einfache" Ringöffnung wie im Video beschrieben, ist präparativ nicht zu bewerkstelligen. Doch darauf kommt es hier gar nicht an: Die hier formulierten (hypothetischen) Ringöffnungsreaktionen sollen lediglich zeigen, ob es sich um eine aromatische Verbindung handelt. Die Reaktionswärmen sind aus den Standardbildungsenthalpien und dem Satz von Hess leicht zu berechnen. Du wirst sicher auch bemerkt haben, dass ich bei der Ringöffnung etwas geschummelt habe. Denn für eine solche benötigt man Wasserstoff oder ein Alkan. Das Prinzip jedoch bleibt:

    Energiezunahme ---> aromatisch
    Energieabnahme ---> antiaromatisch
    Energie bleibt unverändert ---> nicht aromatisch

    Zur Aromatizität wurden in den letzten 5 Jahrzehnten etwa 70 000 Arbeiten veröffentlicht. Es gibt kein einheitliches und endgültiges Konzept, da man den Begriff verschieden interpretieren kann.

    Eines jedoch kann man mit Sicherheit sagen, und ich habe mehrfach darauf hingewiesen: Die 4n+2 – Regel von Hückel ist KEIN universelles Aromatizitätskriterium.

    Mit besten Grüßen und Wünschen

    André

    Von André Otto, vor etwa 5 Jahren
  11. Default

    wie führe ich denn eine einfache ringöffnung bei einem benzolmolekül durch?

    Von Danielschumacher82, vor etwa 5 Jahren
Mehr Kommentare