Advent, Advent, 1 Monat weihnachtliche Laufzeit geschenkt.

Nicht bis zur Bescherung warten, Aktion nur gültig bis zum 18.12.2016!

Aromaten 07:39 min

Textversion des Videos

Transkript Aromaten

Guten Tag und herzlich willkommen. In diesem Video geht es um Aromaten. Gliederung des Films: 1. Benzol und Mesomerie 2. Hückelregel und Aromatizität 3. Benzol als Baustein 4. elektrophile aromatische Substitution 5. Bedeutung für den Menschen 6. Zusammenfassung Zu einigen Abschnitten gibt es weiterführende Videos. Diese habe ich alle mit einem roten Haken gekennzeichnet.

  1. Benzol und Mesomerie: Das Molekül der Verbindung Benzol kann man folgendermaßen darstellen. Der Sechsring wird durch Sigmabindungen aufgebaut. Daneben gibt es noch 3 Pibindungen. Es ist aber auch möglich, das Benzolmolekül so darzustellen. Alle Doppelbindungen haben sich um 1 Platz verschoben. Weder die eine noch die andere Struktur existiert. Sondern eine Struktur dazwischen. Das wird durch den Pfeil, der in 2 Richtungen zeigt, angedeutet. Somit erhält man 2 Bindungsformeln für 1 Molekül. Man spricht hier auch von beiden mesomeren Grenzstrukturen. In Skelettschreibweise lässt sich dies eleganter Formulieren. Die tatsächliche Struktur liegt zwischen den beiden mesomeren Grenzstrukturen. Diese Möglichkeit, 2 Bindungsstrukturen anzugeben, bezeichnet man als Mesomerie. Sie führt zu einer Stabilisierung des Moleküls. Derartige Verbindungen bezeichnet man als Aromaten. Benzol ist ein Aromat. Die offenkettige Verbindung daneben besitzt keine mesomeren Grenzstrukturen. Sie ist ein Aliphat.

  2. Hückelregel und Aromatizität: Benzol ist eine relativ stabile, chemische Verbindung. Daher sagt man, dass Benzol aromatisch ist. Es gibt aber auch Ringe, in denen sich Einfach- und Doppelbindungen abwechseln, die nicht stabil sind. Ein Beispiel dafür, wäre ein Ring, der aus 4 Kohlenstoffatomen besteht. Er ist instabil und man bezeichnet diese Verbindung als antiaromatisch. Der Ring besteht aus 8 Kohlenstoffatomen. Ist ebenfalls instabil und daher antiaromatisch. Der Ring, der aus 10 Kohlenstoffatomen besteht, ist wieder stabil, und daher aromatisch. Man kann diese Gesetzmäßigkeiten durch eine einfache Regel erklären. Betrachten wir die Zahl der Pi-Elektronen. Sie ist gleich der Anzahl der Kohlenstoffatome, die die Ringe bilden. Nämlich 4, 6, 8 und 10. Die Zahlen 6 und 10 kann man durch den einfach Term 4n+2 beschreiben. Das ist die Sogenannte 4n+2 Regel von Hückel. Sie besagt das derartige Systeme, die aus 1 Ring bestehen und 4n+2 Pi Elektronen besitzen stabil sind, also aromatisch. Achtung! Die Hückelregel darf nur auf Monocyclen, das heißt Einringe, angewendet werden. Hier ein Beispiel, das lehrt, das man die Hückelregel auf Polycyklen nicht anwenden darf. Dieses Molekül besitzt 16 Pi-Elektronen. Das heißt, es steht im Widerspruch zur 4n+2 Regel von Hückel. Trotzdem ist das System aromatisch stabil. Die Verbindung heißt, Pyren.

  3. Benzol als Baustein: Benzol ist Baustein vieler Moleküle, die sich im menschlichen Körper befinden, die synthetisiert werden, und die es in der Natur gibt. Ein Beispiel sind Arzneimittel. Außerdem ist es Bestandteil bestimmter essenzieller aromatischer Aminosäuren. Der menschliche Körper kann aromatische Ringe nicht aufbauen. Einzige Ausnahme ist die Umwandlung von Testosteron in Östrogene. In Anwesenheit des Enzyms Aromatase. Aromatische Bestandteile finden wir in Adrenalin, Dopamin und Vitamin E. Aromatische Ringe findet man in Sulfonamin. Im Sprengstoff TNT und im karzinogenen Stoff Benzpyren.

  4. Elektrophile aromatische Substitution: Die Pi-Elektroden des Benzolrings ermöglichen einen elektrophilen Angriff. Betrachten wir ein Beispiel. Benzol reagiert mit einem Bromion. Es bildet sich ein Sogenannter Pi Komplex. Aus diesem Pi Komplex entsteht in der zweiten Stufe ein Sigmakomplex. Ein Proton wird abgespalten und es entsteht Brombenzol. Dies ist ein Beispiel für eine elektrophile aromatische Substitution. In diesem Fall wird sie als Bromierung bezeichnet. Es gibt noch andere elektrophile aromatische Substitutionen. Alkylierung und Acetylierung nach Friedel-Crafts. Nitrierung und Sulfonierung.

  5. Bedeutung für den Menschen: Im Abschnitt 3 haben wir gesehen, das Aromaten Baustein für viele wichtige Stoffe sind. Der Mensch nimmt Aromaten in Form von Sulfonamiden und Aspirin, als Arzneimittel auf. Thyroxin ist ein Hormon der Schilddrüse. Auch diese Verbindung ist teilweise aromatisch. Aromatische Anteile besitzen Östrogene (Sexualhormone). Und auch Azofarbstoffe enthalten aromatische Ringe. Serotonin und Dopamin, beides Neurotransmitter, besitzen aromatische Anteile. Vanille und Anis, beides Aromastoffe, sind beides aromatische Verbindungen. Ferner findet man aromatische Bestandteile im Tocopherol und in der Folsäure, in Vitaminen. Und auch Phenylalanin ist eine essenzielle Aminosäure, die einen Benzolring enthält.

  6. Zusammenfassung: Der Benzolring ist mesomerielstabilisiert. Andere potenzielle Aromaten erfahren entweder Stabilisierung oder Destabilisierung. Das wird durch die Sogenannte 4n+2 Regel von Hückel bestimmt. Aromatische Bestandteile enthalten die Karzinogene Verbindung Benzpyren und der Sprengstoff TNT. Aromatische Ringe findet man in einigen Arzneimitteln. Auch in Hormonen und in Farbstoffen, die unsere Kleidung einfärben. Die Neurotransmitter Serotonin enthalten aromatische Anteile. Vanille und Anis sind aromatisch. Es gibt sogar aromatische Vitamine. Die essenzielle Aminosäure Phenylalanin ist eine aromatische Verbindung. An die elektrophile Substitution habe ich hier nicht noch einmal erinnert.

Ich danke für die Aufmerksamkeit. Alles Gute, aus Wiedersehen.

Informationen zum Video
7 Kommentare
  1. 001

    Wenn 10 = 4n +2 ist, dann ist n = 2. Hückel-Regel erfüllt, aber bitte nicht für Naphthalin!

    Von André Otto, vor mehr als 3 Jahren
  2. 001

    Umgekehrt ist es richtig: Man wendet die Regel auf die richtigen Systeme (Monozyklen) an und stellt bei 4n + 2 fest: aromatisch!
    FALSCH: Irgendein System mit 4n +2 delok. Pi-Elektronen suchen und dann feststellen: aromatisch (?)
    Bestimme einmal die Zahl der Pi-Elektronen im Pyren (wikipededia). Na, merkst du etwas?!? Das ist nämlich ein Vollblutaromat!!!
    Ich habe vor drei Jahren eine Reihe von Filmen zu dem Thema (drei oder vier gedreht). Du kannst sie dir ja einmal einschauen.
    Alles Gute

    Von André Otto, vor mehr als 3 Jahren
  3. Default

    Ok Danke, alles klar. Eine Unklarheit habe ich dennoch: Wie kommt man dann mit der 4n+2 Regel in einem 10er Ring auf 10pi Elektronen? Also wie leitet diese 4n+2 Regel diese 10 pi eletronen her? Da müsste ja n in dem Fall 2 sein. Wofür stünde dann diese natürliche Zahl 2? Oder versteh ich die Regel grad komplett falsch?

    Von Skyliner88, vor mehr als 3 Jahren
  4. 001

    Nein, nein und nochmals nein!
    n ist einfach eine natürliche Zahl: 0, 1, 2, ...
    Übrigens: Ganz wichtig! Auch wenn ich das zum hundertsten Mal sage.
    Die Hückel-Regel ist richtig und nur anwendbar auf Monozyklen. Das heißt auf Systeme, die aus einem einzigen Ring bestehen. Dabei ist es völlig gleich, ob es ein neutrale Molekül wie Benzol oder ein Ion (Kation oder Anion) ist. Das bedeutet, dass die Regel NICHT ANWENDBAR ist auf Verbindungen wie Naphthalin oder Phenanthren, deren Moleküle aus mehreren Ringen bestehen. Ich sage das deshalb, weil es leider eine Vielzahl von Organik - Professoren gibt, die mit der Hückel - Regel die Stabilität von Polyzyklen "beweist".
    Und weiter: Die Hückel - Regel ist bei größeren Ringen noch keine Garantie, dass die Verbindung relativ stabil ist. Dafür ist die quantenchemische Hückel - Methode, deren Ergebnis sie schließlich ist, zu einfach.
    Alles Gute

    Von André Otto, vor mehr als 3 Jahren
  5. Default

    Hallo Herr Otto. Wofür steht das n in der Hückelregel? Für die Anzahl der C-Atome?

    Von Skyliner88, vor mehr als 3 Jahren
  1. 001

    Das freut mich.

    Von André Otto, vor fast 5 Jahren
  2. Default

    hallo, echt supergut erklärt..vielen dank :)

    Von Bayazit06, vor fast 5 Jahren
Mehr Kommentare