Hückelregel 10:47 min

Textversion des Videos

Transkript Hückelregel

Hallo liebe Chemieinteressierte, hier ist wieder Andre mit dem 2. Teil des Videos zur Aromaten-Chemie. Es heißt Hückelregel. Welche Voraussetzungen solltet ihr erfüllen? Zum Ersten solltet ihr nach wie vor gute Kenntnisse über Alkane, Alkene und Alkine besitzen. Ihr solltet als Nächstes gut mit der Hybridisierung umgehen können. Als dritten Punkt solltet ihr euch das erste Video über Benzol angesehen haben, soweit ihr über Benzol noch keine Informationen besitzt. Als Viertes möchte ich die Mesomerie nennen, die im 1. Video auch besprochen wurde und als Fünftes solltet ihr natürlich wissen, was es mit Sigma- und Pi-Bindungen auf sich hat. Als Einstieg möchte ich euch noch einmal eine der mesomeren Grenzstrukturen des Benzolmoleküls darstellen. Rechts daneben findet ihr die p-Orbitale, die sich an jedem einzelnen Kohlenstoffatom befinden. Ihr habt im ersten Video gelernt, dass diese Orbitale in Wechselwirkung treten. Einfach ausgedrückt kann man das durch 2 mesomere Grenzstrukturen I und II ausdrücken, die letztendlich ein Elektronen-Sextett bilden. Daher wird Benzol stabil. Man sagt auch, dass es sich um ein aromatisches Molekül handelt. Eine scheinbar analoge Situation findet man in einem etwas kleineren Molekül, dem Molekül Cyclobutadien-1,3. Auch hier kann man ohne Probleme 2 mesomere Grenzstrukturen aufzeichnen und als Ergebnis könnte man sich vorstellen, dass man hier 4 vollständig delokalisierte Elektronen auffindet. Der Ärger beginnt mit der Praxis. Es zeigt sich, dass Cyclobutadien äußerst instabil ist und nur sehr schwer isolierbar ist. Eine Erklärung für das unerwartete Phänomen fand der deutsche Chemiker Erich Hückel im Jahre 1931 unter Verwendung der nach ihm benannten Methode. Hückel erforschte Cyclobutadien und Benzol und andere Verbindungen einer Verbindungsklasse, die man als Annulene bezeichnet. Diese Verbindungen müssen folgenden Bedingungen genügen: 1. es muss sich um einfache Ringe handeln 2. diese Ringe müssen über Doppelbindungen verfügen und 3. es muss sich um sogenannte konjugierte Systeme handeln Das heißt, Einfach- und Doppelbindung müssen sich fortwährend abwechseln. Ich hab einmal die Eigenschaften von 3 wichtigen Annulenen in einer Tabelle zusammengestellt. Diese besitzen entsprechend 4, 6 oder 8 Pi-Elektronen. Dabei zeigt es sich, dass die Moleküle mit 4 und 8 Pi-Elektronen relativ instabil sind, während das Molekül mit 6 Pi-Elektronen über eine ausgezeichnete Stabilität verfügt. Instabile Systeme bezeichnet man als anti-aromatisch, während Systeme mit erhöhter Stabilität als aromatisch bezeichnet werden. Bereits an dieser Stelle lässt sich eine wichtige Gesetzmäßigkeit feststellen. Im Falle von 4 Pi-Elektronen kann man schreiben: 4×1, im Falle von 8 Pi-Elektronen 4×2, das heißt, in jedem Fall wird die Zahl 4 mit einer natürlichen Zahl multipliziert. Hier handelt es sich um Anti-Aromaten. Beim Aromaten Benzol mit 6 Kohlenstoffatomen hingegen schreibt man: 4×1+2. Das heißt, die Zahl 4 wird mit einer natürlichen Zahl multipliziert und anschließend wird eine 2 addiert. Und schon können wir die Hückelregel ableiten. Sie lautet: Annulene mit 4n+2 Pi-Elektronen sind stabil, aromatisch. Annulene mit 4n Pi-Elektronen sind instabil, antiaromatisch. Die Hückelregel wird auch als 4n+2 Regel bezeichnet. Was ist nun dieses n? Hat es eine besondere Bedeutung? Vielleicht physikalischer Natur? Nein, das ist nicht so. Bei n handelt es sich lediglich um eine natürliche Zahl, beginnend mit 0, 1, 2, 3 und so weiter. Ich möchte euch ein etwas größeres Molekül präsentieren, ein Vertreter der Annulene. Wir wollen einmal überprüfen, ob es sich hier um eine aromatische Verbindung handelt. Zunächst einmal müssen wir die Anzahl der Pi-Elektronen auszählen. Habt ihr gezählt? Es handelt sich um 14 Pi-Elektronen. Nehmen wir einmal an, dass die Verbindung aromatisch ist, dann muss in Übereinstimmung mit der Hückelregel gelten: 14=4n+2. Wir subtrahieren nun von beiden Seiten der Gleichung 2 und dividieren das erhaltene Ergebnis durch 4. Wir erhalten 3=n. n ist eine natürliche Zahl, also ist das abgebildete Molekül aromatisch. Die Hückelregel ist nicht nur richtig für neutrale Moleküle, man kann sie auch verwenden, wenn man zyklische Ionen betrachtet. Nehmen wir einmal das Cyclopropenyl-Kation, C3H6+. In diesem Kation haben wir 2 Pi-Elektronen und 1 positive Ladung. Man kann jetzt, unter Ausnutzung des Mesomerie-Verfahrens, 3 mesomere Grenzstrukturen einzeichnen. Führt das zur Stabilisierung? Nehmen wir einmal an, dass das Molekül aromatisch ist. Dann muss in Übereinstimmung mit der Hückelregel gelten: 2=4n+2. Wir subtrahieren 2 und dividieren beide Seiten der erhaltenen Gleichung durch 4. Das Ergebnis ist 0=n. Also eine natürliche Zahl. Damit ist das Cyclopropenyl-Kation stabilisiert, es ist aromatisch. In diesem Zusammenhang noch ein interessantes Problem: Kann das Cyclopentadien Molekül aromatisch werden? Das Molekül selber ist nicht aromatisch. Nach Abspaltung eines Proton allerdings erhalten wir ein Anion, für das man 5 mesomere Grenzstrukturen schreiben kann. Wichtig hierbei zu erkennen ist, dass nach Abspaltung des Protons, das Elektronenpaar, welches zwischen dem Wasserstoffatom und dem Kohlenstoffatom als Bindung existierte, vollständig zu den delokalisierten Elektronen gehört. Damit ergeben sich 6 Pi-Elektronen. 6 Pi-Elektronen bedeutet aber, dass wir es mit einem System zu tun haben, das dem des Benzols gleicht. Das Ion ist demzufolge stabil aromatisch. Nun wollen wir noch ein bisschen üben. Aromatisch oder antiaromatisch, entscheidet bitte selber. Schaut euch die abgebildete Verbindung an. Man nennt sie auch Pyridin. Ist sie aromatisch oder antiaromatisch? Das freie Elektronenpaar, das am Stickstoffatom nicht eingezeichnet war, gehört hier nicht zum konjugierten System. Demzufolge müssen wir nur 6 Pi-Elektronen berücksichtigen. Bei 4n+2 erhalten wir n=1, was uns wohl bekannt ist. Das Molekül ist aromatisch. Ein weiteres Beispiel. Dieses Molekül nennt man Pyrrol. Aromatisch oder antiaromatisch? Die Antwort muss lauten: aromatisch! Wundert euch das? Zu Recht denke ich. Doch hier haben wir eine andere Situation. Das freie Elektronenpaar am Stickstoffatom gehört hier zum konjugierten Pi-System, wir haben 6 Pi-Elektronen, was nach der Hückelregel eine aromatische Verbindung ergibt. Zuletzt noch eine ganz, ganz, ganz wichtige Bemerkung: Die 4n+2 Regel von Hückel gilt nur, nur, nur für einfache Ringe - Monozyklen. So, dass war es wieder für heute. Es würde mich freuen, wenn ich euch auf einem nächsten Video wieder treffen könnte. Alles Gute und viel Erfolg, tschüss!

Informationen zum Video
9 Kommentare
  1. 001

    Hallo,
    hat diese Frage etwas mit dem Video zu tun. Ich verstehe sie leider nicht.
    Bei Erfüllung der Hückel - Regel muss die Zahl der π - Elektronen 4n + 2 betragen, n muss natürlich sein (n = 0, 1, 2, 3, ...). Wenn ich wie beim Cyclobutadien als Elektronenzahl 4 habe, so kann ich den Ansatz
    4 = 4n +2
    machen.
    Wir subtrahieren 2 (-2).:
    2 = 4n
    Wir dividieren durch 4(:4):
    1/2 = n
    Seitentausch und Darstellung als Dezimalzahl:
    n = 0,5
    n ist somit nicht natürlich (n = 0, 1, 2, ...)
    Schlussfolgerung:
    Beim Cyclobutadien handelt es sich um keine aromatische Verbindung.
    Alles Gute und viel Erfolg

    Von André Otto, vor mehr als einem Jahr
  2. Default

    Woher kommt bei p-Elektronenformel n-Zahl Bsp. 4.1/4.1+2/4.2?
    Woher Leitet sich die Formel ?

    Von Petrovv92, vor mehr als einem Jahr
  3. 001

    Ich hab mir mal das Merocyanine 540 angeschaut (Wikipedia).
    Das einzige, was da aromatisch ist, ist der Benzolring. Notwendige aber noch nicht hinreichende Bedingung für die Aromatizität sind:
    1. konjugierter Ring
    2. mindestens zwei mesomere Grenzstrukturen (gemeint sind "natürliche", also nicht solche, wo die Elektronenpaare künstlich lokalisiert werden, um positive und negative Ladungen zu produzieren)

    Beim zweiten Ring lässt sich nur eine Struktur schreiben. Damit ist die Bedingung für Aromatizität NICHT erfüllt. Überhaupt gibt es nur eine elektronische Struktur bis auf den Benzolring. Daher: NICHT aromatisch!
    Alles Gute

    Von André Otto, vor fast 3 Jahren
  4. Default

    Merocyanine sind nicht aromatisch oder ?? Aber warum ?

    Von Sara111, vor fast 3 Jahren
  5. Default

    sehr gut erklärt vielen Dank für die top Videos!!

    Von Deniz C, vor fast 3 Jahren
  1. 001

    Konjugierte Bindungen sind möglich, oder dieslben in Kombination mit einem Elektronenpaar oder einer positiven Ladung. Natürlich ist Cyclopentadien nicht aromatisch. Dafür aber das Cyclopentadienyl-Anion. Du kannst dafür 5(!) Valenzformeln schreiben. Das Molekül ist stabilisiert. Die Begründung liefert die Hückelregel. Sie wird mit Hilfe der einfachsten quantenchemischen Methode, der Hückel-MO-Methode hergeleitet und gilt ausschließlich für konjugierte Monocyclen.
    Alles Gute

    Von André Otto, vor mehr als 3 Jahren
  2. Default

    Warum können wir bei Cyclopropenyl Kation die Hückelregel anwenden?
    Die Hückelregel wird hier verletzt, da wir hier nicht konjugierte Bindungen haben.
    Genauso auch bei Cyclopentadien sind die Bindungen nicht Konjugiert.
    Bei der Abspaltung von einem H+ bei Cyclopentadien wird die Anzahl der pi-Elektronen 6. Wie kann ich dabei die Anzahl der Pi Elektronen bestimmen.

    Von Akoezbek Cansu, vor mehr als 3 Jahren
  3. 001

    Pyridin ist aromatisch. Die freien Elektronen werden hier nicht gebraucht. Pyrrol ist auch aromatisch. Hier braucht man das freie Elektronenpaar.
    Alles Gute

    Von André Otto, vor fast 4 Jahren
  4. Default

    Warum ist Pyridin nicht aromatisch? Ist es weil die zwei freien Elektronen geomatrisch so angeordnet sind dass sie nicht in das Pi System reingehen? Es ist doch eigentlich auch sp2 hybridisiert wie die C Atome...

    Und warum gehen die freien Elektronen beim Pyrol in das Pi System rein?

    Von Mischka, vor fast 4 Jahren
Mehr Kommentare