Advent, Advent, 1 Monat weihnachtliche Laufzeit geschenkt.

Nicht bis zur Bescherung warten, Aktion nur gültig bis zum 18.12.2016!

Textversion des Videos

Transkript Alkene – Isomerie

Guten Tag, herzlich willkommen zu diesem Video, es heißt: Alkene, Unterthema Isomerie. Was ist Isomerie? Stellen wir uns vor, es ist auf dem Bau, und wir haben 2 schwarz umrandete Bausteine und einen Rot umrandeten Baustein. Genauso können wir uns die Bausteine der Moleküle, nämlich die Atome vorstellen. Diese Bausteine können wir auf 2 Arten anordnen, genauso geschieht das bei den Molekülen. Wir haben damit ein Molekül 1 und ein Molekül 2. Beide Moleküle bestehen jeweils aus 2 schwarz Umrandeten und 1 rot umrandeten Baustein, das heißt sie besitzen die gleiche Zusammensetzung, aber sie haben unterschiedliche Strukturen. Der Zusammensetzung entsprechen die Summenformeln und die sind offensichtlich für Molekül 1 und 2 völlig gleich. Also 1=2. Die Strukturformeln sind aber unterschiedlich, also 1 ist ungleich 2. Isomerie liegt vor, wenn wir gleiche Summenformeln schreiben, aber verschiedene Strukturformeln der Moleküle vorliegen. Schauen wir uns einmal einige Beispiele für Alkene an. Ich schreibe ein Molekül auf, und ihr werdet es sicher gleich erkennen. Um welches Molekül handelt es sich? Richtig, es handelt sich um das Molekül des Ethens. Aus 2 Kohlenstoffatomen und 4 Wasserstoffatomen können wir keine andere Struktur basteln. Wir haben nur eine einzige Strukturformel, und damit liegt keine Isomerie vor. Nehmen wir das Propenmolekül. Können wir hier eine 2. Strukturformel formulieren? Ich glaub, ich hab eine Idee, schaut einmal. So, das wär's. Die Doppelbindung ist jetzt nicht links, sondern rechts. Aber nicht voreilig sein, wir können das linke Molekül drehen, aus der Ebene herausheben und können es genau auf das 2. heraufsetzen. Beide sind dann völlig gleich. Also links und rechts handelt es sich um ein und dasselbe Propenmolekül. Auch hier liegt keine Isomerie vor. Probieren wir es einmal mit dem Butenmolekül. Ich betrachte zunächst die Möglichkeit mit 4 Kohlenstoffatomen in einer Kette und der Doppelbindung ganz links. Das ist meine Verbindung 1. Nun versetze ich die Doppelbindung von links zur Mitte und erhalte tatsächlich ein neues Molekül. Dieses hat eine Struktur, die sich von der Struktur des 1. Moleküls unterscheidet. Das ist meine Verbindung 2. Damit liegt Isomerie vor. Einmal die Doppelbindung links und zum 2. die Doppelbindung in der Mitte. Wir haben es hier mit einer unterschiedlichen Lage der Doppelbindung zu tun. Ich könnte mir aber vorstellen, dass meine Kohlenstoffatome und die daran befindlichen Wasserstoffatome noch etwas anders angeordnet sind. Schaut einmal. Ich habe tatsächlich mit dem Molekül 3 eine neue Struktur erhalten. Und zwar durch die Verzweigung der Kohlenstoffkette. Somit haben wir 3 Isomere des Butens erhalten. Das ist möglich durch eine unterschiedliche Anordnung der Doppelbindung oder durch eine Verzweigung der Kohlenstoffkette. Betrachten wir noch ein Beispiel für verschiedene Isomere, die durch die Lage der Doppelbindung entstehen. Wir nehmen Hexen. En bedeutet der Kohlenwasserstoff enthält 1 Doppelbindung. Und Hex, das kennt ihr ja schon aus den Alkan Videos, bedeutet 6 Kohlenstoffatome sind im Molekül vorhanden. Aus Gründen der Einfachheit möchte ich nur das Kohlenstoffgerüst einzeichnen. Die Wasserstoffatome werde ich vernachlässigen. Die Doppelbindung soll sich zwischen den beiden 1. Kohlenstoffatomen befinden. Alle anderen Bindungen sind Einfachbindungen. Das ist das Molekül 1. Ich lasse nun die Doppelbindung einen Schritt weiter wandern. Sie befindet sich nun zwischen dem 2. und dem 3. Kohlenstoffatom. Damit habe ich eine neue Struktur: Molekül 2. Bei Molekül 3 ist die Doppelbindung genau in der Mitte und bei Molekül 4 geht sie einen Schritt weiter. Aber Vorsicht, das ist doch genau das Molekül 2, nur gedreht. Also habe ich gar kein neues Molekül erhalten mit 4. 4=2, und auch wenn die Doppelbindung noch einen Schritt weitergeht, nach hinten, so habe ich kein Molekül 5 erhalten. Denn Molekül 5 ist Molekül 1, nur gedreht. Somit habe ich durch eine unterschiedliche Lage der Doppelbindung 3 verschiedene Isomere feststellen können. Betrachten wir nun Isomerie durch die Verzweigungen der Kette. Ich nehme das Molekül Penten. En heißt, ich habe eine Doppelbindung und Pent, das wisst ihr aus den Alkan-Videos, bedeutet 5 Kohlenstoffatome. Zunächst die unverzweigte Kette mit der Doppelbindung zwischen dem 1. und dem 2. Kohlenstoffatom. Das ist die Verbindung 1. Wenn es am 3. Kohlenstoffatom zu einer Verzweigung kommt, so erhalten wir eine neue Struktur: Verbindung 2. Bereits an der Doppelbindung kann die Verzweigung einsetzen. Wir erhalten Verbindung 3. Verbindung 2 kann man auch so schreiben, indem man das Kohlenstoffatom, das unten ist, in die Hauptkette legt. Und noch dieses Molekül. Doch hier habe ich ein bisschen geschummelt, denn ich habe die Doppelbindung von der ersten Stellung in die Mitte verlegt. Ich habe durch Verzweigungen der Kette, 4 Isomere erhalten. Und zum Abschluss noch eine interessante Tatsache. Schaut euch dieses Molekül einmal an. Ihr erkennt es wieder, es handelt sich um 1, 2, 3, 4 Kohlenstoffatome, also Buten. Das gleiche Molekül mit einer etwas anderen Anordnung der Methylgruppen CH3, schreibe ich rechts auf. Wodurch unterscheiden sich diese beiden Strukturen? Einmal, nämlich links sind die beiden Methylgruppen CH3 näher beieinander. Und rechts sind sie einfach weiter voneinander entfernt. Wir haben 2 unterschiedliche Strukturen. Das Isomer links bezeichnet man als cis-Isomer und das Isomer rechts als trans-Isomer. Diese Art der Isomerie wird als cis-trans-Isomerie bezeichnet. Wir fassen zusammen: Isomerie kann bei Alkenen entstehen, 1. durch die Stellung der Doppelbindung, 2. durch Verzweigung der Kohlenstoffkette, und 3. durch cis-trans-Isomerie. Ich danke für eure Aufmerksamkeit. Alles Gute, auf Wiedersehen.

Informationen zum Video
3 Kommentare
  1. Default

    Guten Abend Herr Andre Otto,
    ich kann mich meiner Vorrednerin nur anschließen :)!
    Und habe wenn auch etwas spät, diese klasse Art ergänzend zu lernen, wenn auch erst eine halbe Woche vor meiner großen Mediziner Abschluss-Klausur für mich entdeckt. Und muss mir sogar eingestehen das Chemie auch etwas Freude machen kann*. Lieben Gruß, Kalonike-S.K:

    Von Kalonike, vor fast 5 Jahren
  2. 001

    Liebe Mirella,

    danke für deine netten Worte. Zu einem guten Video gehört manchmal auch etwas Glück.

    Ich wünsche dir alles Gute, viel Erfolg und Spaß an der Chemie.

    André

    Von André Otto, vor fast 5 Jahren
  3. Foto%20am%2015.09.11%20um%2022.38

    Ich möchte mich bei Ihnen bedanken dass Sie so schwierige Sachen so gut erklären. Beispiele die wirklich in Kopf bleiben. Vielen dank

    Von Mirella C., vor fast 5 Jahren