Advent, Advent, 1 Monat weihnachtliche Laufzeit geschenkt.

Nicht bis zur Bescherung warten, Aktion nur gültig bis zum 18.12.2016!

Komplexometrie 12:06 min

Textversion des Videos

Transkript Komplexometrie

Guten Tag und herzlich willkommen! In diesem Video geht es um "Volumetrie 1. Teil (Komplexometrie)". Das Video gehört zur "Quantitativen Analytik". Für die notwendigen Vorkenntnisse solltet ihr als Erstes das Video für Mediziner "Chelatkomplexe" angeschaut haben. Außerdem ist es wichtig, das Video "Volumetrie" zu schauen, in diesem Video habe ich eine Einführung in das Verfahren gegeben. Mein Ziel ist es, euch grundlegende Vorstellungen über die Komplexometrie zu vermitteln. Den Film habe ich in 6 Abschnitte unterteilt: 1. Das Wesen der Komplexometrie, 2. Einige Chelatkomplexe, 3. Komplexone (Komplexbildner), 4. Stabilität von EDTA-Komplexen, 5. Metallindikatoren, 6. Zusammenfassung.     1. Das Wesen der Komplexometrie Für die Komplexometrie benötigen wir eine Versuchsanordnung, so wie links vereinfacht dargestellt. Die Komplexometrie ist eine Variante der Volumetrie. Das obere Glasgerät ist eine Bürette, in ihr befindet sich die Lösung eines Komplexons, eines Chelatkomplexbildners. Das Komplexon wird durch den Hahn in das Becherglas eingetropft. Im Becherglas befinden sich Metallionen in Lösung. Das Komplexon, der Chelatbildner, reagiert mit den Metallionen zu einem Chelatkomplex. Ein sehr berühmter Chelatkomplex ist dieser. Das Komplexon ist das große Molekül ringsherum, das aus vielen verschiedenen Atomen besteht. Das Metallion ist das kleine graue Teilchen im Zentrum des Moleküls. Der Chelatkomplex ist das gesamte Teilchen, bestehend aus Komplexon und Metallionen. Chelatkomplexe sind sehr stabil und daher besonders für die Bestimmung von Metallionen geeignet. Bei der Volumetrie findet eine sogenannte Titration statt, das ist der Vorgang, den wir links betrachtet haben. Bei der vorliegenden Titration werden Metallionen bestimmt. Das Ende der Titration wird mit einem sogenannten Metallindikator über eine Farbveränderung festgestellt. Er muss sich während der Titration bereits im Becherglas befinden. 2. Einige Chelatkomplexe Beim 1. Chelatkomplex schließen 2 Moleküle Ethylendiamin ein Metallion ein. Ethylendiamin ist das Komplexon, ein Kupfer(II)-Ion ist das Metallion. Komplexon und Metallion bilden zusammen den Chelatkomplex. Und jetzt kommen wir zu einem relativ komplizierten Chelatkomplex. In seinem Zentrum befindet sich ein Nickel(II)-Ion. Das Nickel(II)-Ion tritt mit dem Komplexon durch die nicht bindenden Elektronenpaare der Stickstoffatome in Wechselwirkung. Ich vervollständige nun noch das Molekül. Hier sitzt ein Sauerstoffatom und hier haben wir ein weiteres Sauerstoffatom. An dem Sauerstoffatom befindet sich ein Wasserstoffatom, unten am Sauerstoffatom befindet sich ebenfalls ein Wasserstoffatom. Am Stickstoffatom oben links haben wir ebenfalls ein Sauerstoffatom. Und hier kommt es zur Wasserstoffbrückenbindung. Unten das gleiche Bild, zunächst ein Sauerstoffatom und hier ist die Wasserstoffbrückenbindung. Beim Komplexbildner handelt es sich um N-Diacetyldioxim. Und nun noch ein 3. Beispiel. Wir haben hier 2 zusammenhängende 6-Ringe, die jeweils ein Stickstoffatom enthalten. Wie man sieht, sind beide Ringe aromatisch. Jeder Ring ist noch mit einem Sauerstoffatom verbunden. Nun wird klar, wie der Chelatkomplex gebildet wird. Das Metallion ist ein Magnesiumion. Die beiden Stickstoffatome stellen jeweils ein nicht bindendes Elektronenpaar für die Chelatbindung zur Verfügung. Das Gleiche geschieht mit den beiden Sauerstoffatomen. Der Chelatkomplex ist gebildet. Man nennt diesen Chelatkomplex Magnesiumoxinat. Wir haben 3 Chelatkomplexe betrachtet, die 3 verschiedene Metallionen enthalten, des Kupfers, des Nickels und des Magnesiums. 3. Komplexone (Komplexbildner) Wir wollen in diesem Abschnitt 3 Beispiele gegenüberstellen, wir wollen Formel, Name und den pKs-Wert, d. h. das Maß für die Säurestärke, angeben. Ein wichtiges Komplexon ist Nitriloessigsäure. Der 1. pKs-Wert, pK1, beträgt 1,89, d. h. eine relativ kräftige Säure, pK2=2,49 und pK3=9,73, d.h. schon eine schwache Säure. Ethylendiamintetraessigsäure, abgekürzt EDTE: pK1=2,0 und pK2=2,76, pK3 beträgt 6,61, also schwach, und schließlich pk4=10,26, also sehr schwach. Als Drittes das Di-Natriumsalz der Ethylendiamintetraessigsäure, abgekürzt EDTA. Die pKs-Werte sind genauso groß wie beim EDTE. 4. Stabilität von EDTA-Komplexen Hier haben wir 3 Darstellungen von EDTA-Komplexen, d.h. Komplexen des Komplexons Ethylendiamintetraacetat mit einem Metallion. Wir formulieren nun das chemische Gleichgewicht zwischen den Metallionen, dem Komplexon EDTA und dem entsprechenden Chelatkomplex. Die Stabilitätskonstante ergibt sich da nach dem Massenwirkungsgesetz, als Quotient aus der Konzentration des Chelatkomplexes und dem Produkt der Konzentrationen des Metallions und des Komplexons. Da wir mit hohen Stabilitäten rechnen können, verwenden wir der Einfachheit halber den dekadischen Logarithmus der Stabilitätskonstanten K. Wir wollen nun die Werte von lgK für einige wichtige Kationen in einer Tabelle zusammenstellen: Na+ 1,66, Ag+ 7,2, für das Magnesiumion 8,69, Kalziumion 10,7, Strontiumion 8,63, Magnesium(II)-Ion 13,79, Eisen(II)-Ion 14,33, Eisen(III)-Ion 25,1, das ist eine sehr große Stabilität, Kobalt(II) 16,31, das Nickel(II)-Ion zeigt 18,62, wieder eine ausnehmend hohe Stabilität, genauso beim Kupfer(II)-Ion 18,80, Zinkion 16,50, das Aluminiumion ergibt einen Wert von 16,13, das Vanadium(III)-Ion hat einen sehr hohen Wert von 25,9, Titan(IV)-Ion 19,4 und Zirconium(IV)-Ion 19,9. Alle Stabilitäten sind hoch bzw. sehr hoch, nur der Wert für das Natriumion ist relativ gering. Alle Ionen sind somit für die Komplexometrie geeignet, einzige Ausnahme ist das Natriumion. 5. Metallindikatoren Metallindikatoren geben durch eine Farbänderung an, dass der Äquivalenzpunkt erreicht ist. Die Titration ist an dieser Stelle beendet. Nehmen wir an, wir tragen in ein Koordinatensystem eine Eigenschaft der Titrationslösung gegen den Verbrauch an Komplexon ab. Der Wendepunkt der Kurve ist der Äquivalenzpunkt. Vor dem Erreichen des Äquivalenzpunkts ist der Metallindikator blau, anschließend rot. Wir wollen uns nun einige Metallindikatoren vor und nach Erreichen des Äquivalenzpunktes anschauen. Ich richte in der Tabelle folgende Spalten ein: der Indikator, die Farbe des Metallkomplexes, die Farbe der reinen Lösung, den verwendeten pH-Bereich und zu untersuchende Metallionen. Als Erstes betrachten wir Xylenolorange: Der Metallkomplex ist rot, die reine Lösung hingegen gelb, der pH-Bereich liegt zwischen 1 und 5. Man kann zum Beispiel die Ionen des Wismuts, Thoriums, Scandiums und Bleis bestimmen. Indikator Eriochromschwarz: Der Metallkomplex ist rot, die reine Lösung blau, der pH-Bereich liegt zwischen 7 und 12. Der Indikator dient für die Bestimmung von Zinkionen, Mangan(II)-Ionen und Magnesiumionen. Brenzkatechinviolett: Der Komplex ist rot, die reine Lösung blau. Man arbeitet bei pH-Werten < 7. Der Indikator ist geeignet für die Bestimmung von Wismut und Thorium. Es ist auch möglich, dass der Metallkomplex rotviolett ist, die reine Lösung ist dann gelb, der pH-Bereich muss dann zwischen 7 und 12 liegen. Es können die jeweils 2-wertigen Ionen des Kupfers, Kobalts und Nickels untersucht werden. Als Letztes der Indikator Murexid. Der Metallkomplex ist in diesem Fall rot, die reine Lösung blauviolett, der Arbeitsbereich für den pH-Wert liegt zwischen 8 und 12. Es können Kalziumionen und die 2-wertigen Ionen des Nickels und Kupfers bestimmt werden. Die pH-Bereiche müssen eingehalten werden, sonst funktionieren die Indikatoren nicht. Das geschieht durch sogenannte Pufferlösungen, abgekürzt Puffer. 6. Zusammenfassung Die Komplexometrie ist eine Variante der Volumetrie. Es handelt sich um die volumetrische Bestimmung von Metallionen durch Chelatkomplexe. Die meisten der bekannten Metallionen können durch Komplexometrie bestimmt werden. Von allen in dem Video untersuchten Beispielen gibt es nur beim Natriumion Probleme. Der Äquivalenzpunkt der Titration wird durch Metallindikatoren bestimmt. Der dafür notwendige pH-Wert wird durch Pufferlösungen eingehalten. Die Metallindikatoren zeigen durch einen Farbumschlag den Äquivalenzpunkt an. Ich danke für die Aufmerksamkeit. Alles Gute. Auf Wiedersehen.

Informationen zum Video
4 Kommentare
  1. 001

    Danke für die Hilfe.
    Alles Gute

    Von André Otto, vor mehr als 3 Jahren
  2. Avatarl

    Es gibt eine Konkurrenz von Proton und von den Metall-Ionen um die
    Liganden-Anbindung.

    –pH-niedrig ⇔ [H3O]+hoch ⇒ Komplex wird zerstört
    –pH-hoch ⇔ [H3O]+niedrig ⇒ Komplex wird gebildet

    Der pH-Wert muss größer als 8.5 sein um komplexometrische Titration durchführen zu können.

    Von Quake Rxnc, vor mehr als 3 Jahren
  3. 001

    Die Antworten sind komplex. Aus Zeitgründen möchte ich mich ihnen einfach mal nicht stellen.
    Alles Gute

    Von André Otto, vor mehr als 4 Jahren
  4. Ich2

    Warum ist die komplexometrische Titration so sehr pH Abhängig? Was geschiet da genau, am Äquivalenzpunkt?
    mfg

    Von Dflow, vor mehr als 4 Jahren