Advent, Advent, 1 Monat weihnachtliche Laufzeit geschenkt.

Nicht bis zur Bescherung warten, Aktion nur gültig bis zum 18.12.2016!

Molekülorbitale 10:15 min

Textversion des Videos

Transkript Molekülorbitale

Guten Tag und herzlich willkommen! Dieses Video heißt "Molekülorbitale". Als Vorkenntnisse solltet ihr mitbringen: Das Wissen, was Atomorbitale, die kovalente Bindung und Atome und Moleküle sind. Ziel des Videos ist es, euch den Formalismus der MO-Theorie nahezubringen. Ich möchte euch erklären, wie Molekülorbitale aus Atomorbitalen entstehen und außerdem möchte ich, dass ihr versteht, warum es ein stabiles Wasserstoffmolekül und ein instabiles Heliummolekül gibt. Den Film habe ich in sechs Abschnitte untergliedert:

  1. Bindungstheorien
  2. die MO-Theorie
  3. additive und subtraktive Überlappung der Wellenfunktionen
  4. bindende und antibindende Orbitale
  5. das Wasserstoffmolekül und das Heliummolekül
  6. Zusammenfassung.  
  7. Bindungstheorien Die Entstehung der chemischen Bindung gab den Wissenschaftlern vor etwa 100 Jahren viele Rätsel auf. Denn letztendlich: Wie sollte es denn sein, dass 2 negativ geladene Teilchen zusammen eine chemische Bindung ausbilden? Als moderne Theorie wurde die VB-Theorie entwickelt. Ihre Autoren sind Heitler, London und Pauling. Alternativ dazu wurde die MO-Theorie entwickelt. Ihre Autoren waren Hund und Mulliken. VB bedeutet Valenzbindungstheorie, MO Molekülorbitaltheorie. Heute weiß man, dass beide Theorien zu gleichen Ergebnissen führen. Die Valenzbindungstheorie betrachtet isolierte Bindungen, so wie wir sie mit den Valenzstrichen darstellen. Ich möchte das symbolisieren durch eine Kohlenstoff-Dreierkette. Im Rahmen der Molekülorbitaltheorie sind die entstehenden Molekülorbitale über das ganze System angeordnet. Ich habe hier mit Rot und Blau zwei mögliche Orbitale für dieses C3-System dargestellt.

2: Die MO-Theorie Ein wichtiger Unterschied zwischen der VB-Theorie und der MO-Theorie besteht darin, dass erste recht anschaulich ist, während die zweite den Mangel besitzt, dass sie dies nicht ist. Beide Theorien dienen dazu, die Schrödinger-Gleichung in möglichst guter Näherung zu lösen. Hilfreich dabei sind die Computer, die in den letzten Jahrzehnten eine gewaltige Entwicklung durchgemacht haben. Als Plus bei MO gegenüber VB stellte sich heraus, dass MO quantitativ leichter handhabbar ist. Mitunter sind auch die Ergebnisse der Molekülorbitaltheorie besser interpretierbar. Wenn man Vor- und Nachteile beider Theorien summiert, so ist die MO-Theorie generell der VB-Theorie vorzuziehen. Vor allem für die MO-Theorie wurde in den letzten Jahrzehnten ein leistungsfähiger Formalismus entwickelt, der dafür dient, mit Hilfe von Computern Eigenschaften von Molekülen zu bestimmen. Ein genereller Bestandteil dieses Formalismus besteht darin, dass die Molekülorbitale als Linearkombination der Atomorbitale dargestellt werden. Psi, das Molekülorbital, wird dargestellt als Summe der beiden Atomorbitale Phi1 und Phi2. Phi1 und Phi2 sind jeweils mit den Koeffizienten c1 und c2 multipliziert. Damit haben wir eine Linearkombination geliefert. Etwas scherzhaft, aber mit ernstem Hintergrund möchte ich euch sagen: Bitte nicht verstehen oder vorstellen. Als Vorstellung kann man folgendes einfache Modell verwenden: Man stellt sich eine Überlappung von Atomorbitalen vor. So eine Überlappung wie hier von einem s-Atomorbital und einem p-Atomorbital führt zu einem entsprechenden Molekülorbital. Die Überlappung ist mit roter Farbe gekennzeichnet. Solche Molekülorbitale kann man mithilfe der Computergrafik erzeugen. Z. B. für Fluorwasserstoff (HF) oder für das Acetylenmolekül (HC Dreifachbindung CH). In beiden Darstellungen ist die Überlappung gut zu erkennen.

  1. Additive und subtraktive Überlappung der Wellenfunktionen Zwei Wellenfunktionen können additiv oder subtraktiv überlappen. Bei additiver Überlappung findet kein Vorzeichenwechsel statt, bei subtraktiver Überlappung ist ein Vorzeichenwechsel gegeben. Diese Eigenschaften sind Ergebnis des Formalismus, kein Ergebnis einer Messung. Additive Überlappung führt zu Stabilität des Systems. Subtraktive Überlappung hat Instabilität zur Folge. Und noch ein kleiner Hinweis: Bitte nicht verstehen oder vorstellen.

  2. Bindende und antibindende Molekülorbitale Additive und subtraktive Überlappung hat als Ergebnis zwei unterschiedliche Molekülorbitale zur Folge. Nehmen wir an, wir haben hier zwei Atomorbitale, grün gekennzeichnet, jeweils belegt mit einem Elektron. Mit roter Hintergrundfarbe habe ich ein Molekülorbital gekennzeichnet. Dieses entstand durch additive Überlappung. Es ist bindend. Das blau gekennzeichnete Molekülorbital entstand durch subtraktive Überlappung. Es ist antibindend. Das bindende Molekülorbital ist energetisch günstiger als die beiden Atomorbitale und viel, viel energetisch günstiger als das antibindende Molekülorbital. Daher wird es im Molekül mit den beiden Elektronen der beiden Atomorbitale besetzt. Das folgt nach dem Aufbauprinzip und dem Pauli-Prinzip. Das System erfährt eine Stabilisierung. Es kommt zur Ausbildung einer kovalenten Bindung.

  3. Wasserstoffmolekül und Heliummolekül Wir beginnen mit dem ersten Teil, das Wasserstoffmolekül. Beim Atomorbital handelt es sich um ein 1s-Orbital. Das Molekülorbital, welches bindend ist, ist ein σ-Orbital. Das antibindende Molekülorbital wird als σ*-Orbital bezeichnet. Die Darstellung der Molekülorbitale ist die gleiche wie im Abschnitt 4. Das antibindende Molekülorbital sieht so aus. Das bindende Molekülorbital hat so eine Gestalt. Es ist völlig klar, dass das System eine kovalente Bindung ausbildet. Kommen wir nun zum Heliummolekül. Im Unterschied zum Wasserstoffmolekül kommen hier nur jeweils ein Elektron von jedem der beiden Heliumatome hinzu. Entsprechend müssen diese beiden Elektronen auf die Molekülorbitale aufgeteilt werden. Somit erhält das antibindende Molekülorbital die beiden Elektronen. Als Ergebnis wird die Gesamtenergie nicht kleiner. Es kommt zu keiner Bindung.

  4. Zusammenfassung Die chemische Bindung gab den Forschern vor etwa 85 Jahren viele Rätsel auf. Eine brauchbare Theorie war die Valenzbindungstheorie. Ihre Autoren waren Heitler, London und Pauling. Eine alternative Theorie war die Molekülorbitaltheorie. Sie wurde kreiert von Hund und Mulliken. Obwohl die MO-Theorie abstrakter als die VB-Theorie ist, so ist sie numerisch besser handhabbar. Beide dienen dazu, die Schrödinger-Gleichung zu lösen. Molekülorbitale werden als Linearfunktion der Atomorbitale dargestellt. Anschaulicher ist es, wenn man eine Überlappung der entsprechenden Atomorbitale ins Auge fasst. Überlappung kann additiv oder subtraktiv geschehen. Im ersten Fall ändert die resultierende Wellenfunktion ihr Vorzeichen nicht. Im zweiten Fall kommt es zu einem Vorzeichenwechsel. Die resultierenden Molekülorbitale sind im ersten Fall bindend, im zweiten Fall antibindend. Die Stabilität des Wasserstoffmoleküls kann man erklären, dass aus den beiden Atomorbitalen der Wasserstoffatome ein Molekülorbital mit besetzten Elektronen gebildet wird. Dieses ist gerade das bindende Molekülorbital. Im Falle des Heliums kommen zwei Elektronen von den beiden Heliumatomen zusätzlich hinzu. Das bedeutet, dass nicht nur das bindende Molekülorbital, sondern auch das antibindende Molekülorbital mit zwei Elektronen besetzt wird. Das Heliummolekül ist instabil. Es existiert nicht. Ich danke für die Aufmerksamkeit. Alles Gute, auf Wiedersehen. Und nun noch ein Wort zum Schluss: Bitte nicht unbedingt verstehen oder vorstellen.

Informationen zum Video
9 Kommentare
  1. 001

    Danke für die Bemerkung. Das war von mir ein Schaltfehler, da ich die 2 anders (als zwei Teilchen) interpretiert habe.
    Wenn man allerdings als zweiatomiges Teilchen mit der Ladung +1 interpretiert, dann ist es tatsächlich stabil (2 Elektronen bindend, 1 antibindend).
    Aber, schon richtig: für alpha-Strahlen sind die Begriffe "bindend" und "antibindend" sinnlos.
    Danke für das aufmerksame Schauen,
    alles Gute

    Von André Otto, vor etwa 3 Jahren
  2. Default

    Zu Kommentar von He2+: Das He2+ ist ein einatomiges Ion, also wird es keine bindende und antibindende MO besitzen- würde ich mal so behaupten.

    Von Prm1983, vor etwa 3 Jahren
  3. 001

    Na und ob! Das sind die berühmten radioaktiven alpha - Strahlen.
    Und die Erklärung ist einfach: Das antibindende Orbital ist leer, die Bindungselektronen führen zu Stabilität.
    Alles Gute

    Von André Otto, vor mehr als 3 Jahren
  4. Default

    Ein He2+ Ion könnte aber existieren, oder ?

    Von Esi 92, vor mehr als 3 Jahren
  5. 001

    Ja.

    Von André Otto, vor mehr als 3 Jahren
  1. Default

    nur ein Video zum MO ??? :(

    Von Yasmine A., vor mehr als 3 Jahren
  2. 001

    Lokalisiert und delokalisiert sagt man zu Elektronen. "Delokalisiert" bedeutet, dass sie im Atom weit und gut verteilt sind. Sie bewegen sich sehr schnell über einen großen Raum. Das führt zu einer erhöhten Stabilität. Wenn bindende Molekülorbitale "delokalisiert" sind, dann heißt das, dass sie über das Molekül verteilt sind. Auch das führt zu erhöhten Stabilität.
    "Lokalisiert" bedeutet das Gegenteil.
    Alles Gute

    Von André Otto, vor mehr als 3 Jahren
  3. Default

    können Sie bitte auch erklären was delokalisierte und lokalisierte Molekülorbitale sind?

    Von Akoezbek Cansu, vor mehr als 3 Jahren
  4. Default

    daaaaaaaaaaaaaaaaaaaaaanke seeeeeeeeeeeeeeeeeeeeeeeehr :******************+

    Von Yasmine A., vor mehr als 3 Jahren
Mehr Kommentare