Advent, Advent, 1 Monat weihnachtliche Laufzeit geschenkt.

Nicht bis zur Bescherung warten, Aktion nur gültig bis zum 18.12.2016!

Phasenverschiebung 07:57 min

Textversion des Videos

Transkript Phasenverschiebung

Hallo und herzlich willkommen zu Physik mit Kalle. Wir wollen uns heute aus dem Gebiet Schwingungen und Wellen mit der Phasenverschiebung beschäftigen. Für dieses Video solltet Ihr bereits den Film zum Wechselstrom gesehen haben. Wir lernen heute, was Phasenverschiebung ist, wie man sie beschreiben kann und als Beispiel, wie sie am ohmschen Widerstand, am Kondensator und an der Spule im Wechselstromkreis aussieht. Zwischen zwei Sinusschwingungen besteht eine Phasenverschiebung, die man delta Phi nennt, wenn sie die gleiche Periodendauer T haben, ihre Maxima jedoch zu unterschiedlichen Zeitpunkten erreichen. Wir erinnern uns, die Formeln für die momentanen Werte von sinusförmiger Wechselspannung oder sinusförmigen Wechselstrom waren u(t)=Scheitelspannung ×sin Omega t+PHIu und für den Strom I(t)=Scheitelstrom ×sin Omega t+PHIi. PHIu und PHIi sind die Phasen von Spannung und Strom. Denn nur weil die beiden sinusförmig sind, heißt es ja noch lange nicht, das sie genau wie der Sinus bei 0 anfangen. Delta PHIi, also die Differenz der beiden Phasen, nenne ich die Phasenverschiebung. Ihr seht leicht, ist PHIu=PHIi ist die Phasendifferenz 0 und damit liegt keine Phasenverschiebung vor. Man sagt dann, Strom und Spannung sind in Phase. Im Bild unten könnt Ihr mehrere gegeneinander phasenverschobene Sinusschwingungen sehen. Wenn Ihr die beiden Hilfslinien beachtet, die genau im Abstand einer Periodendauer eingezeichnet sind, erkennt Ihr schnell, alle diese Schwingungen haben die gleiche Periodendauer. Die Wellenberge sind jedoch überall woanders. Das heißt, sie sind alle gegeneinander phasenverschoben. Wie man diese Phasenverschiebung nun beschreiben kann, das wollen wir uns im nächsten Kapitel ansehen. Eine Sinusschwingung kann man sich ja irgendwie als einen sich ständig wiederholenden Umlauf auf einer Kreislinie vorstellen. Falls Ihr Probleme habt, das zu verstehen, keine Panik, dazu kommt gleich noch eine Animation. Wir erinnern uns aber erst mal, wir haben zwei verschiedene Möglichkeiten den Winkel anzugeben, der uns sagt, wo wir uns auf dem Kreis befinden. Die erste Möglichkeit ist das Bogenmaß. Im Bogenmaß steht 0 für 0° und 2TT für 360°. Da sich mein Kreisumlauf ja alle 2TT wiederholt, kann ich also aufschreiben sin(Omega t)=sin(Omega t+2TT). Meine Phasenverschiebung muss also irgendwo zwischen 0 und 2TT liegen. Im Gradmaß wiederholt sich ein Kreisumlauf natürlich nach 360°. Ich kann also aufschreiben sin(Omega t)=sin(Omega t+360°). Das heißt, das in Gradmaß meine Phasenverschiebung zwischen 0° und 360° liegen muss. Die dritte Möglichkeit könnt Ihr gut im Bild unten erkennen. Meine Sinusschwingung benötigt die Periodendauer groß T, um eine vollständige Schwingung auszuführen. Ich kann also meine Phasenverschiebung auch als Bruchteil von T angeben. Sie muss dann irgendwo zwischen 0 Sekunden und groß T liegen. Wie merken uns also, man gibt die Phasenverschiebung normalerweise im Bogenmaß, im Gradmaß oder als Bruchteil der Periodendauer T an. Weil sie sowohl die Sinusschwingung als Kreisumlauf, als such die Phasenverschiebung im Gradmaß besonders schön erklärt, will ich Euch noch kurz eine Animation von einem der 3 Beispiele, die wir uns gleich ansehen wollen, zeigen. In der Animation links könnt Ihr den Verlauf von Strom und Spannung an einem Kondensator beobachten. Wie Ihr seht, eilt der Strom der Spannung voraus. Es besteht also eine Phasenverschiebung, die wir mit Hilfe der beiden eingezeichneten Pfeile sehr leicht ablesen können. Delta PHI ist TT/2. Das entspricht auch 90° oder einem 1÷4 der Periodendauer T. Es ist übrigens auch möglich, der Vollständigkeit halber, eine Phasendifferenz zu erhalten, wenn ich zwei Schwingungen von verschiedenen Quellen mit gleicher Periodendauer aussende. Falls die eine Schwingung zu einem bestimmten Ort einen längeren Weg zurück zulegen hat als die andere, entsteht dort durch diesen Gangunterschied eine Phasendifferenz. Dieser Fall wird in den Videos über Indifferenz ausführlich behandelt. Falls Ihr Euch also dafür interessiert bitte seht dort nach. Zum Schluss wollen wir uns jetzt den Spannungs- und Stromverlauf am ohmschen Widerstand, am Kondensator und an der Spule ansehen. Die ich hier einfach mit R,L und C abkürze. Denn im Wechselstromkreis nennt man eine Spule einen induktiven und einen Kondensator einen kapazitiven Widerstand. Messe ich Strom und Spannung an einem ohmschen Widerstand im Wechselstromkreis, so erhalte ich diesen Verlauf. Wir sehen die 0 Durchgänge und die Maxima und Minima geschehen bei beiden zur selben Zeit. Die beiden sind also in Phase. Das heißt, es liegt keine Phasenverschiebung vor, Delta PHI ist also 0. Beim Kondensator, denn wir ja gerade schon in der Animation gesehen hatten, sieht der Verkauf so aus. Der Strom eilt der Spannung voraus. Wir haben also eine Phasenverschiebung. Und sie beträgt Delta PHI = TT/2 oder 90° oder T/4. Messen wir den Verlauf von Spannung und Strom an einer Spule, so ergibt sich folgendes Bild. Der Strom hinkt diesmal der Spannung hinterher, und zwar um den gleichen Betrag, den er beim Kondensator vorausgeeilt war. Die Phasenverschiebung Delta PHI ist also -TT/2 oder -90° oder -T/4. Da sich der Sinus ja mit jeder Periode wiederholt, kann ich diese nicht so schönen, negativen Phasenverschiebungen einfach umwandeln, indem ich eine Periode dazuzähle. Ich kann also auch schreiben Delta PHI=-TT/2+2TT oder 3TT/2 und das entspricht 270° oder 3T/4. Wir wollen noch mal wiederholen, was wir heute gelernt haben. Zwischen 2 Sinusschwingungen besteht eine Phasenverschiebung, wenn sie die gleichen Periodendauer T haben, ihre Maxima jedoch zu unterschiedlichen Zeitpunkten erreichen. Man kann die Phasenverschiebung Delta PHI auf unterschiedliche Weisen angehen. Im Bogenmaß, sie liegt dann zwischen 0 und 2TT, im Gradmaß, dann muss sie zwischen 0° und 360° liegen und als Bruchteil der Periodendauer, dann liegt sie zwischen 0 Sekunden und der Periodendauer groß T. Negative Phasendifferenzen kann man leicht in positive verwandeln, indem man einfach eine komplette Periode dazu addiert. Zum Beispiel im Gradmaß -90°=-90°+360°=270°. Und im Bogenmaß -TT/2=-TT/2+2TT=3TT/2. So, das war es schon wieder für heute. Ich hoffe ich konnte Euch helfen? Vielen Dank fürs Zuschauen vielleicht bis zum nächsten Mal. Euer Kalle.

Informationen zum Video
1 Kommentar
  1. Default

    Koennt ihr bitte mehr Aufgaben stellen, um das Wissen von den Videos zu benutzen, weil Physik braucht, dass man viele Aufgaben loest, um den Stoff richtig zu verstehen.

    Von Ahmedtamer12, vor etwa 2 Jahren