Advent, Advent, 1 Monat weihnachtliche Laufzeit geschenkt.

Nicht bis zur Bescherung warten, Aktion nur gültig bis zum 18.12.2016!

Kernfusion 06:48 min

Textversion des Videos

Transkript Kernfusion

Hallo und herzlich willkommen zu Physik mit Kalle. Wir machen weiter mit der Atomphysik und wollen uns heute mit der Kernfusion beschäftigen. Wir lernen heute:

Was Kernfusion ist, was bei einer Kernfusion genau passiert, was der Massendefekt ist und wo Kernfusion überhaupt stattfindet.

Für dieses Video solltet ihr mindestens das Video über den Atomkern gesehen haben, aber auch das Video über die Radioaktivität kann nicht schaden, um die Beispiele am Ende komplett zu verstehen. Falls ihr noch nicht wisst, was Isotope sind, empfehle ich euch auch das Video über das Periodensystem mit der Einführung zur Atomphysik anzusehen. So, dann wollen wir mal. Wir fangen mit der einfachsten Frage an.

Was ist eigentlich Kernfusion? Im Bild links seht ihr zwei Isotope des Wasserstoffs. Oben mit zwei Neutronen und einem Proton, das sogenannte Tritium und unten mit einem Proton und einem Neutron das Deuterium. Wenn Druck und Temperatur hoch genug sind, können sich diese zwei Kerne, trotz der elektrischen Abstoßung nahe genug kommen, um mit der starken Wechselwirkung aneinander gebunden zu werden. Dabei entsteht ein neuer Kern. Diesen Vorgang nennt man Kernfusion. Einfach gesagt bedeutet Kernfusion also: Zwei Atomkerne verschmelzen zu einem. Dabei kann Energie gewonnen, aber auch verloren werden. Um zu verstehen warum das so ist, müssen wir uns einmal ansehen, was dabei genau passiert. Links im Bild seht ihr Albert Einstein. 1905 veröffentlichte er seine Arbeit zur speziellen Relativitätstheorie, die die vielleicht bekannteste Formel der Physik enthält: E=m×c². Ihr habt diese Formel wahrscheinlich schon öfter gesehen und euch gefragt, wofür ihr die eigentlich braucht. Ihr braucht sie zum Beispiel hier. Wie ihr vielleicht schon wisst, steht das E für Energie, das m für Masse und das c für die Lichtgeschwindigkeit. Mithilfe dieser Formel lässt sich berechnen, wie viel Energie bei einer Kernfusion gewonnen wird oder verloren geht. Bei einer Kernfusion wird nämlich Masse in Energie verwandelt oder umgekehrt. Wie viel Energie man dabei gewinnt oder verliert, hängt vom sogenannten Massendefekt ab. Und da wir den noch nicht kennen, wollen wir ihn uns mal genauer ansehen. Stellt euch vor, ich hätte eine Waage, die so fein ist, dass ich damit kleinste Unterschiede sogar zwischen einzelnen Atomkernen messen kann. Wenn ich nun zum Beispiel einen Heliumkern nehme, also zwei Neutronen und zwei Protonen und auf der rechten Seite den Kern hinlege und auf der linken die einzelnen Bauteile, dann werde ich feststellen, dass die beiden Seiten nicht gleich schwer sind. Das ist der sogenannte Massendefekt. Der Atomkern, der durch die starke Wechselwirkung zusammengehalten wird, hat eine sogenannte Bindungsenergie. Diese Bindungsenergie trägt nach Einsteins Formel direkt zur Masse des Kerns bei. Deshalb ist der Kern leichter als seine einzelnen Bauteile. Einfach gesagt wird die durch die Bindungsenergie ersetzte Masse, bei der Fusion des Kerns als Energie frei. Und deshalb kann man aus Kernfusionen auch beachtliche Energiemengen gewinnen. Auf der anderen Seite ist der Massendefekt auch der Grund, warum durch radioaktiven Zerfall Energie gewonnen werden kann. Wenn ein radioaktiver Kern zu einem stabileren Kern zerfällt, hat dieser stabilere Kern eine größere Bindungsenergie. Generell kann man sagen, es lohnt sich eher kleine Kerne zu verschmelzen, und Große zerfallen zu lassen. Es gibt hierbei aber Ausnahmen. Wie ich am Anfang schon gesagt habe, müssen für eine Kernfusion allerdings Temperatur und Druck hoch genug sein, sodass die Kerne überhaupt nah genug aneinander kommen können, um zu verschmelzen. Es gibt einen Ort, der diese Bedingungen erfüllt und den ihr auch alle schon einmal gesehen habt. Es ist die Sonne. Im Inneren der Sonne herrschen Temperaturen von etwa 15 Millionen Grad und enormer Druck. Daher sind im Inneren der Sonne einige verschiedene Kernfusionen möglich. Die Wichtigste davon ist die sogenannte Proton-Proton-Reaktion, die ich euch einmal kurz zeigen möchte. Die Sonne besteht zu über 90% aus Wasserstoff und diese Wasserstoffkerne, also Protonen werden in der Proton-Proton-Reaktion zu Heliumkernen verschmolzen. Im ersten Schritt verschmelzen zwei Protonen miteinander. Da ein Atomkern aus zwei Protonen höchst instabil ist, zerfällt dieser relativ schnell durch Abgabe eines Positrons und eines Neutrinos zu einem Deuteriumkern, also einem Proton und einem Neutron. Diese Reaktion ist übrigens trotz der extremen Bedingungen in der Sonne äußerst unwahrscheinlich. Ein Proton benötigt in der Sonne durchschnittlich 15 Milliarden Jahre, um mit einem zweiten Proton zu verschmelzen. Aufgrund der riesigen Mengen Wasserstoff in der Sonne reicht diese Reaktion dennoch trotzdem, um das gesamte Sonnensystem zu beheizen. Machen wir weiter mit dem zweiten Schritt unserer Reaktion. Unser frischgebackener Deuteriumkern kann nun mit einem weiteren Proton zu Helium-3 verschmelzen. Also einem leichten Heliumkern mit zwei Protonen und nur einem Neutron. Dabei wird auch ein Photon erzeugt, dass die überschüssige Energie trägt. Im dritten und letzten Schritt der Proton-Proton-Reaktion, verschmelzen nun zwei dieser Helium-3-Kerne zu einem Helium-4-Kern, wobei 2 Protonen abgegeben werden. Mithilfe dieser Reaktion wird also der Wasserstoff in der Sonne langsam zu Helium verbrannt und die dabei gewonnene Energie ist enorm. 1g Wasserstoff, das zu Helium verbrannt wird, setzt genauso viel Energie frei wie 10000 l Heizöl. Aus diesem Grund wird schon seit Jahrzehnten an Fusionsreaktoren geforscht, die mit Kernfusion Energie gewinnen sollen. Es wird aber wohl noch einige Zeit dauern, bis die technischen Probleme gelöst sind. Fassen wir noch einmal zusammen, was wir heute gelernt haben. Kernfusion nennt man den Prozess, bei dem zwei Atomkerne zu einem verschmelzen. Man kann durch Kernfusion Energie gewinnen, meistens bei leichten Kernen, aber auch verlieren, zum Beispiel, indem man mit zwei schweren Kernen einen noch viel schwereren Kern herstellt. Allgemein gesagt, ist der Massendefekt des erzeugten Kerns größer als die Summe der Massendefekte der beiden verschmelzenden Kerne, dann wird Energie gewonnen. Ist er kleiner, wird Energie verloren. Der Massendefekt ist definiert als der Unterschied zwischen der Masse eines Kerns und der zusammengezählten Masse seiner einzelnen Bauteile. In der Sonne werden durch Kernfusion unglaubliche Mengen Energie erzeugt. So, das war es schon wieder für heute. Vielen Dank fürs Zuschauen, ich hoffe ich konnte euch helfen. Ich wünsche euch einen schönen Tag, bis dann euer Kalle.

Informationen zum Video
6 Kommentare
  1. Default

    schwieriger Inhalt verständlich dargestellt.
    Vielen Dank.

    Von Ru Kroker, vor 12 Monaten
  2. Default

    Einstein hat auf die Tafel im Hintergrund bestimmt lol geschrieben :D
    Danke für dein Video habs verstanden. Und danke Einstein :)

    Von Selma Reinhold, vor mehr als 3 Jahren
  3. Nikolai

    @Suemeyra: Der Kern ist leichter als seine Bestandteile da die Bindungsenergie nichts wiegt. Sie trägt zur Masse bei bedeutet, dass wenn man die Bindungsenergie mit der Formel E=m*c^2 in Masse umrechnen würde, man den Wert erhält um den der Kern leichter ist.

    Von Nikolai P., vor mehr als 3 Jahren
  4. Default

    Wenn die Bindungsenergie doch zur Masse beiträgt muss der zusammengebaute Kern doch schwerer sein als seine Einzelteile?

    Von Suemeyra Oezdemir, vor mehr als 3 Jahren
  5. Default

    Hat der Kern, der durch die Verschmelzung des Deuterium- und des Tritiumkernes entstanden ist, einen Namen?

    Von Sabinesolf, vor fast 4 Jahren
  1. 02102010082

    super

    Von Massi, vor mehr als 5 Jahren
Mehr Kommentare