Textversion des Videos

Transkript Minkowski-Diagramme

Hallo und herzlich willkommen zu Physik mit Kalle. Wir wollen uns heute aus der speziellen Relativitätstheorie mit den Minkowski-Diagrammen beschäftigen. Für dieses Video solltet ihr unbedingt die Filme über die Zeitdilatation und die Längenkontraktion gesehen haben. Wir lernen heute was Minkowski-Diagramme sind und wie ich sie zeichnen kann, ob man auch alle Regeln, die wir bis jetzt in der speziellen Relativitätstheorie kennengelernt haben in ihr nachprüfen kann und wie so ein Minkowski-Diagramm für ein etwas komplizierteres Beispiel, nämlich das Leiter-Paradoxon, aussieht. Die Minkowski-Diagramme wurden, der Name lässt es schon vermuten, 1908 von Hermann Minkowski entwickelt. Links seht ihr ein Bild von ihm. Sie zeigen auf einfache Art die Beschaffenheit von Raum und Zeit nach der speziellen Relativitätstheorie. Das heißt also, ich kann relativistische Vorgänge richtig in ihnen darstellen. Das Interessante am Mikowski-Diagramm ist, dass es mehrere zueinander bewegte Inertialsysteme darstellen kann. Wir zeichnen mal ein einfaches Beispiel und fangen an mit einer Ort- und einer Zeitachse. Also x und t im Winkel von 90° zueinander. Dies ist das System eines ruhenden Beobachters. Also sozusagen unser Eigensystem. Nun kann ich ein 2. Koordinatensystem einzeichnen, dessen Achsen aber jeweils um den Winkel Alpha verschoben sind. Dies sind die Koordinatenachsen des relativ zu unserem Beobachter mit der Geschwindigkeit v bewegten Inertialystems. Je schneller sich das System bewegt, desto größer ist der Winkel Alpha. Die Regel ist: Tangens Alpha=v/c. Zum Schluss wählen wir noch die Zeicheneinheiten so, dass eine Einheit auf der x-Achse einer Lichtsekunde entspricht und eine Einheit auf der t-Achse einer Sekunde. Dann kann ich ein Teilchen, das sich mit Lichtgeschwindigkeit bewegt, einfach mit einem 45°-Winkel einzeichnen. Denn Licht legt ja pro Sekunde eine Lichtsekunde zurück. So weit so gut. Im nächsten Kapitel wollen wir nun überprüfen, ob unsere relativistischen Phänomene z. B. Zeitdilatation und Längenkontraktion in unserem Minkowski-Diagramm auch nachprüfbar sind. Wir zeichnen wieder unsere beiden Koordinatenachsen. In blau einen ruhenden Beobachter und in rot ein relativ dazu bewegtes System. Es soll die Geschwindigkeit v=0,5c haben. Also ist der Winkel Alpha der inverse Tangens von 0,5 und das ist ungefähr 26,6°. So, jetzt noch schnell die Lichtgeschwindigkeit eingezeichnet und schon kann es losgehen. Fangen wir an mit der Zeitdilatation. Beobachtet man die Zeit in einem relativ zu sich bewegten System, so scheint sie dort langsamer zu verstreichen. Gleichzeitig ist für unseren Beobachter alles, was zu einer bestimmten Zeit tB auf einer Parallelen zur x-Achse durch tB liegt. Wir suchen uns also eine beliebige Zeit tB aus, zeichnen durch sie eine Parallele zur x-Achse und messen damit an den beiden Achsen t und t' die Zeit in den beiden Systemen. Wenn wir nun versuchen abzulesen, fällt uns auf, wir haben für das 2., also das rote System, ja noch gar keine Einheiten eingetragen. Wir müssen also erst einmal herausfinden, welcher Abschnitt auf den x'- und t'-Achsen einer Lichtsekunde bzw. einer Sekunde entspricht. Vorsicht, bei diesem Schritt macht man gerne einen Fehler, denn die Abstände sind nicht einfach gleich wie im ruhenden System, man muss sie mit einer Formel ausrechnen. Und diese Formel lautet: e'(für das bewegte System)=e(des ruhenden Systems)×\sqrt(1+v²/c²)/\sqrt(1-v²/c²). In unserem Fall bedeutet das also, die Zeicheneinheiten für die x'- und t'-Achsen sind 1,29 Mal so groß wie die für das ruhende System. Falls ihr wissen möchtet, woher diese Formel kommt, muss ich euch auf das nächste Video vertrösten, in dem wir die rechnerische Version der Minkowski-Diagramme, nämlich die Lorenz-Transformation, durchnehmen. Für das Erste sei einfach nur gesagt, dass wir diese Regel anwenden müssen, damit Zeitdilatation, Längenkontraktion und die anderen relativistischen Effekte stimmen. So, nachdem wir auch diesen letzten vorbereitenden Schritt getan haben, wollen wir aber jetzt endlich überprüfen, ob die Zeitdilatation auch wirklich stimmt. Wir sehen nun, der ruhende Beobachter misst für sein eigenes System eine Zeit von über 4 Sekunden, für das bewegte System aber eine Zeit von unter 4 Sekunden. D. h. die Zeit im bewegten System ist kleiner, scheint also langsamer zu verlaufen. Soweit stimmt also alles. Jetzt schauen wir mal, wie es in der anderen Richtung aussieht. Für den bewegten Beobachter findet alles zur gleichen Zeit tB statt, was auf einer Parallelen zu x'/tB liegt. Die im eigenen System gemessene Zeit tB ist für ihn größer als die Zeit tR' im blauen System. Auch für ihn scheint also die Zeit im anderen System langsamer zu laufen. Die Zeitdilatation stimmt also in beide Richtungen. Falls euch in diesem Schritt der Unterschied größer vorkam, als im letzten, richtig gesehen, ich habe ein wenig ungenau gezeichnet. Die x'- und t'-Zeicheneinheiten sind ein klein wenig kleiner, als sie eigentlich sein sollten. Das ist aber nur eine kleine Ungenauigkeit. Die Effekte lassen sich immer noch richtig sehen. So, die Zeitdilatation ist also abgehakt, weiter zur Längenkontraktion. Wir wollen also nun Längenmessungen in beiden Systemen vergleichen. Dazu suchen wir uns eine Länge lR vom Ursprung aus und zeichnen eine Parallele diesmal zur t-Achse ein. Der Schnittpunkt dieser parallele mit der x'-Achse liefert uns die Länge lB. Wie wir sehen, ist lB kleiner als lR. Im bewegten System scheint die Länge also verkürzt. Für die andere Richtung müssen wir nun Parallelen zur t'-Achse einzeichnen. Der Schnittpunkt dieser Parallele mit der x-Achse liefert uns lR' und auch hier stellen wir fest, lR' ist kleiner als lB. Auch aus dem bewegten System erscheinen also Längen im ruhenden System kürzer. Die Längenkontraktion lässt sich auch in beide Richtungen zeigen. Zum Schluss wollen wir noch die Konstanz der Lichtgeschwindigkeit in beiden Systemen überprüfen. Nehmen wir mal an, ein Teilchen hat sich vom Ursprung aus mit der Geschwindigkeit c nach rechts bewegt, bis zum Punkt x. Wir lesen in beiden Koordinatensystemen die Werte für x und t bzw. x' und t' ab und bilden den Quotienten. Dabei stellen wir fest: Delta x/Delta t=Delta x'/Delta t'. Die Lichtgeschwindigkeit ist also in beiden Systemen gleich hoch. So weit so gut. Nachdem wir nun die Regeln kennen, wollen wir uns im letzten Kapital ein etwas komplizierteres Beispiel, nämlich das sogenannte Leiter- oder Garagen-Paradoxon ansehen. Nehmen wir einmal an, eine Leiter bewegt sich mit einer relativistischen Geschwindigkeit auf eine gleich lange Garage zu. Wir zeichnen das System der Garage blau und das System der Leiter, die die Geschwindigkeit 0,5c haben soll, rot. Damit ist der Winkel zwischen den Achsen also wieder 26,6° und die Zeicheneinheiten des roten Systems sind wieder 1,29 Mal größer, als die Zeicheneinheiten des blauen Systems. Da sich die Garage, die in unserem Beispiel 2 Lichtsekunden lang sein soll, ja nicht bewegt, kann ich ihren Anfang und ihr Ende als über die Zeit konstant einzeichnen. Diese Linien, die für die Position des Garagenanfangs und des Garagenendes stehen, nennt man auch die Weltlinien. Unsere Leiter soll wie gesagt genau so lang sein, und da auch sie sich in ihrem eigenen System nicht bewegt, kann ich im roten System ebenfalls die Weltlinie der Leiter einzeichnen. Wie ihr seht, kann ich die Weltlinien, also die Positionen des Leiteranfangs und des Leiterendes, die im roten System unbewegt sind, im blauen System als Bewegung verstehen. Wir sehen in unserem Diagramm zwei Schnittpunkte. Links passiert das Ende der Leiter den Beginn der Garage und rechts stößt der Anfang der Leiter auf das Ende der Garage. Nun wollen wir die Zeitpunkte, zu denen dies geschieht, in den beiden verschiedenen Systemen messen. Für das blaue System kann ich die Zeit ablesen, indem ich eine Parallele zur x-Achse durch den Schnittpunkt zeichne. Wir erhalten folgendes Ergebnis. t1<t2. D. h. also, das Ende der Leiter kommt in die Garage, bevor auf der anderen Seite der Leiteranfang aus der Garage herauskommt. Von der Garage aus betrachtet ist die Leiter also kleiner als die Garage. Im Bild rechts seht ihr noch mal den Vorgang aus der Sicht der Garage. Vom System der Leiter aus betrachtet messe ich die Zeit mit Parallelen zur x'-Achse. Lese ich die beiden Zeitpunkte so ab, erhalte ich ein verblüffendes Ergebnis: t2 ist im System der Leiter kleiner als t1. D. h., die Spitze der Leiter verlässt die Garage, bevor das Ende der Leiter die Garage betreten hat. Im System der Leiter ist die Leiter also länger als die Garage. Rechts seht ihr dies noch mal in einem Bild zusammengefasst. Bevor ihr euch nun völlig den Kopf zerbrecht, wie ich es damals getan habe, dies ist nicht wirklich ein Widerspruch. Es ist ein scheinbarer Widerspruch, und er entsteht durch die Relativität der Gleichzeitigkeit. Beide Beobachtungen sind wirklich richtig, von ihrem Beobachter aus gesehen. Wir wollen noch mal wiederholen, was wir heute gelernt haben: Mit Minkowski-Diagrammen lassen sich relativistische Vorgänge einfach darstellen. Die Zeichenregeln von Mikowski-Diagrammen sind kurz zusammengefasst folgende: Die Zeicheneinheiten e' des bewegten Systems lassen sich mit folgender Formel aus den Zeicheneinheiten e des ruhenden Systemes berechnen: e'=e×\sqrt(1+v²/c²)/\sqrt(1-v²/c²). Das bewegte System verschiebt seine Achsen um den Winkel Alpha. Wobei Alpha der inverse Tangens von v/c ist. Wir haben gesehen: Alle relativistischen Phänomene, jedenfalls die, die wir bis jetzt kennen, lassen sich im Mikowski-Diagramm nachprüfen. Gleichzeitige Ereignisse finden sich im jeweiligen System auf einer Linie parallel zur x- bzw. x'-Achse. Der gleiche Ort wird durch seine sogenannte Weltlinie veranschaulicht. Dies ist eine Linie parallel zur t- bzw. t'-Achse. Weltlinien kann man allerdings auch für bewegte Objekte einzeichnen. Sie sind dann natürlich aber nicht mehr parallel zu den Achsen. So, das war es schon wieder für heute. Ich hoffe, ich konnte euch helfen. Vielen Dank für das Zuschauen, vielleicht bis zum nächsten Mal, euer Kalle.

Informationen zum Video