Advent, Advent, 1 Monat weihnachtliche Laufzeit geschenkt.

Nicht bis zur Bescherung warten, Aktion nur gültig bis zum 18.12.2016!

Längenkontraktion 05:08 min

Textversion des Videos

Transkript Längenkontraktion

Hallo und herzlich willkommen zu Physik mit Kalle. Wir wollen uns heute aus dem Gebiet "Die spezielle Relativitätstheorie" mit der Längenkontraktion beschäftigen. Für dieses Video solltet ihr unbedingt den Film über die Zeitdilatation gesehen haben. Wir lernen heute, was die Längenkontraktion ist, wie ich ihre Formel herleiten kann und zum Schluss wollen wir das Ganze mal am Beispiel einer Weltraumreise durchrechnen.  Als Längenkontraktion bezeichnet man folgendes Phänomen: Je schneller sich ein Beobachter bewegt, umso kürzer nimmt er die Länge von Objekten in der Bewegungsrichtung wahr. Die Zeitdilatation und die Längenkontraktion - der Begriff kommt übrigens vom lateinischen "contrahere", was so viel wie "zusammenziehen" heißt - sind miteinander verknüpft. Und wie, das sehen wir gleich.  Wir wollen nun die Formel für die Längenkontraktion herleiten und dazu betrachten wir, wie Länge gemessen wird, und zwar durch die Messung einer Zeit, in 2 verschiedenen Systemen. Wir betrachten dazu, wie auch gleich im Beispiel, eine Weltraumreise. Das 1. System, in dem wir messen, ist die Erde. Von einer Rakete wird die Strecke l zurückgelegt. Wie wir im Video über die Zeitdilatation erfahren haben, wird im System der Erde dafür die gedehnte Zeit t' gemessen. Im System der Rakete messen wir die Eigenzeit t, die nicht gedehnt ist. Dafür, so haben wir gerade erfahren, erscheint uns die Länge verkürzt. Wir können also hier schreiben: v=l'/t. Die Relativgeschwindigkeit v ist von beiden Systemen aus gemessen gleich. Das heißt, wir können schreiben: l/t'=l'/t. Aus dem letzten Video kennen wir ja bereits die Formel für die Zeitdilatation: t'=t/\sqrt(1-v2/c2). Dies setzen wir nun für t' ein. Die beiden t's kürzen sich heraus und wir erhalten: l×\sqrt(1-v2/c2)=l'. Ihr seht, je größer die Geschwindigkeit v, desto kleiner wird l'. Das ist also die Formel für die Längenkontraktion. Im letzten Kapitel wollen wir nun das Ganze noch an einem kleinen Beispiel durchrechnen. Nehmen wir an, ein Astronaut will von der Erde zum Saturn reisen. Hier sehr ihr ein nicht ganz maßstabgetreues Bild der ganzen Angelegenheit. Die Entfernung zwischen Erde und Saturn, sagen wir mal, beträgt, 70 Lichtminuten. Und die Geschwindigkeit, mit der unsere Rakete unterwegs ist, soll die Hälfte der Lichtgeschwindigkeit betragen. v ist also 0,5×c. Wir rechnen erst mal um: l beträgt 70 Lichtminuten, ist also 70 × 60s × die Lichtgeschwindigkeit. Und das ergibt 1,26×1012m, also 1,26 Milliarden km. Wir benutzen unsere frisch hergeleitete Formel l'=l×(1-v2/c2). Wenn ich für v 0,5c einsetze, kürzt sich die Lichtgeschwindigkeit heraus und ich erhalte \sqrt(1-½2) und das ist \sqrt(0,75). Und damit spuckt mein Taschenrechner für l'=1,09×1012m aus. Teile ich dieses Ergebnis erst durch 60s und dann durch die Lichtgeschwindigkeit, so erhalte ich, dass das ungefähr 60,6 Lichtminuten entspricht. Ich kann also schreiben: Die Strecke Erde-Saturn erscheint dem Astronauten aufgrund der Längenkontraktion knapp 10 Lichtminuten kürzer als von der Erde aus betrachtet.  Wir wollen noch mal wiederholen, was wir heute gelernt haben. Je schneller sich ein Beobachter bewegt, umso kürzer nimmt er die Länge von Objekten in der Bewegungsrichtung wahr. Die Längenkontraktion ist mit der Zeitdilatation verknüpft. Ihre Formel kann mit der Formel für t' hergeleitet werden. Bei Bewegung mit der Geschwindigkeit v relativ zur Länge l eines Objektes, verkürzt sich diese für den Betrachter zu l'=l×\sqrt(1-v2/c2).  So, das war's schon wieder für heute. Ich hoffe, ich konnte euch helfen. Vielen Dank fürs Zuschauen. Vielleicht bis zum nächsten Mal. Euer Kalle

Informationen zum Video
1 Kommentar
  1. Avatar

    Ich habe eine kleine Frage zur der in Kapitel 3 gefertigten Rechnung.
    Es heißt im Gesetz:
    "Je länger [...], umso kürzer [...] die Länge von Objekten in Bewegungsrichtung."

    Die Distanz zwischen Erde und Saturn ist in meinem Verständnis weder ein Objekt, noch in irgendeiner Weise gerichtet.
    Wieso kommt dort die Längenkontraktion Zur Geltung?

    Von Varian S., vor etwa 4 Jahren