Textversion des Videos

Transkript Optischer Dopplereffekt

Hallo und herzlich willkommen bei Physik mit Kalle. Heute wollen wir uns den optischen Dopplereffekt in der speziellen Relativitätstheorie ansehen. Für dieses Video ist es hilfreich, wenn ihr bereits den allgemeinen Film zum Dopplereffekt gesehen habt oder wisst, wie der funktioniert. Wir lernen heute, was der optische Dopplereffekt ist, wie er entdeckt wurde und mit welcher Formel ich ihn berechnen kann. Dann wollen wir mal. Wie so oft, verrät es auch schon hier der Name. Der optische Dopplereffekt wurde 1842 von Christian Doppler vorausgesagt. Links oben seht ihr ein Bild von ihm. Die Aussage war die gleiche, wie die des normalen Dopplereffekts, nur eben für Licht. Bewegt sich eine Lichtquelle relativ zu einem Beobachter, so nimmt dieser die Wellenlänge des Lichtes verändert wahr. Oben rechts habe ich ein Bild eingeblendet, das eine bewegte Lichtquelle veranschaulichen soll. Bewegt sich die Quelle des Lichts auf mich zu, so sollte die Wellenlänge des Lichtes verkleinert werden. Bewegt sie sich dagegen von mir weg, so wird das Licht eine längere Wellenlänge haben. Das Problem bei der ganzen Sache ist aber, dass sich die Lichtquelle relativ schnell bewegen muss, so schnell, dass man große Probleme hatte, den optischen Dopplereffekt in Experimenten nachzuweisen. Wie man ihn dann schließlich doch entdeckt hat, das sehen wir uns nun im nächsten Kapitel an. Obwohl man diese Entdeckung oft Edward Hubble in die Schuhe schiebt, war es meines Wissens nach 1927 Abbé Georges Edouard Lemaitre, der den optischen Dopplereffekt richtig nachwies. Damals führte man Spektralanalysen des Lichtes von entfernten Galaxien durch. Und dabei fiel auf, dass die typischen Spektrallinien bekannter Elemente nicht dort gefunden wurden, wo sie eigentlich sein sollten. Dafür fand man ein Set von Spektrallinien, die ein Stückchen rot verschoben waren, aber im gleichen Abstand der Linien, die man eigentlich erwartet hätte. Lemaitre erläuterte das folgendermaßen: Der optische Dopplereffekt ist der Grund dafür, dass das Licht anderer Galaxien rot verschoben ist. Und er hat recht. Die meisten anderen Galaxien bewegen sich von uns weg. Daher hat ihr Licht eine leicht höhere Wellenlänge. Es gibt nur einige wenige, die sich insgesamt auf uns zubewegen und dadurch blau verschoben sind. Die nächste Schlussfolgerung, die er zog, war die folgende: Das Universum expandiert also. Das heißt, es breitet sich aus. Damit ist Lemaitre der Vater der Urknalltheorie. Wie man den Dopplereffekt für Licht nun berechnen kann, das wollen wir uns im nächsten Kapitel ansehen. Das Verhältnis der beobachteten Wellenlänge zur ausgesandten Wellenlänge, wenn sich die Quelle mit v vom Beobachter entfernt, kan ich mit folgender Formel ausrechnen: Lambda B, also die beobachtete Wellenlänge, geteilt durch Lambda Q, die ausgesandte Wellenlänge, ist gleich (srt(1+v/c)) / (srt(1-v/c)). Vorsicht: Der Vollständigkeit halber soll gesagt sein, dass Rotverschiebung nicht nur durch eine Relativbewegung, sondern auch durch die Schwerkraft verursacht werden kann. Man sagt dann: sie eine Folge der gravitativen Zeitdilatation, denn die Schwerkraft wirkt auch auf das Licht. Dies gehört aber eigentlich mehr in das Gebiet der allgemeinen Relativitätstheorie und wird normalerweise in der Schule nicht mehr durchgenommen. Wir wollen noch mal wiederholen, was wir heute gelernt haben. Der optische Dopplereffekt wurde 1842 von Christian Doppler vorausgesagt. Lemaitre deutete die Rotverschiebung 1927 als Folge des optischen Dopplereffekts und hat damit die Theorie von der Expansion des Universums und so die Urknalltheorie begründet. Die Formel für den Dopplereffekt ist: das Verhältnis der beobachteten Wellenlänge Lambda B zur ausgesendeten Wellenlänge Lambda Q ist (srt(1+v/c)) / (srt(1-v/c)). So, das war's schon wieder für heute. Ich hoffe, ich konnte euch helfen. Vielen Dank fürs Zuschauen! Vielleicht bis zum nächsten Mal. Euer Kalle          

Informationen zum Video