Advent, Advent, 1 Monat weihnachtliche Laufzeit geschenkt.

Nicht bis zur Bescherung warten, Aktion nur gültig bis zum 18.12.2016!

Textversion des Videos

Transkript Kepler'sche Gesetze

Mechanik, heute: Die Keplerschen Gesetze. Hallo und herzlich willkommen zu Physik mit Kalle. Wir beschäftigen uns heute, mit den Keplerschen Gesetzen. Für dieses Video solltet ihr euch bereits ein wenig mit Ellipsen auskennen. Was Johannes Kepler, knapp nach 1600, in seinen berühmten Keplerschen Gesetzen aussagte oder genauer, was er über die Form der Planetenbahnen herausgefunden hatte, was der Flächensatz ist und was wir über die Umlaufzeiten aussagen können. So, los gehts. Das 1. Keplersche Gesetz besagt: Planten bewegen sich auf Ellipsenbahnen. Die Sonne steht dabei in einem der beiden Brennpunkte der Ellipse. Für den Fall, dass ihr euch noch nicht so gut mit Ellipsen auskennt, wiederholen wir schnell ein paar grundlegende Details. Hier seht ihr die grob ellipsenförmige Bahn eines Planeten um die Sonne. Die Sonne steht im einen Brennpunkt der Ellipse, den anderen habe ich mit X markiert. Die Ellipse wird durch zwei Achsen geteilt, die Hauptachse und die Nebenachse. Die Hauptachse ist die Längere der beiden. Die Hälften dieser beiden Achsen nennt man a und b. Wobei a, die Hälfte der Hauptachse, große Halbachse heißt und b, die Hälfte der Nebenachse, die kleine Halbachse ist. Die Verbindungslinie zwischen der Sonne und dem Planeten, der sich auf der Ellipsenbahn bewegt, nennt man den Leitstrahl oder Fahrstrahl des Planeten. So weit, so gut. Dann mal weiter zum nächsten Keplerschen Gesetz. Das 2. Keplersche Gesetz nennt man auch den Flächensatz und dieser besagt: Der Fahrstrahl eines Planeten überstreicht in gleichen Zeiten gleich große Flächen. Als die Erde näher an der Sonne war, hatte sie eine höhere Geschwindigkeit. Dennoch überstreicht ihr Fahrstrahl in gleichen Zeiten immer gleiche Flächen. Im Bild links seht ihr ein Beispiel für zwei solcher Flächen. Wir wollen das ganze Mal schnell herleiten. Wir betrachten die zwischen der Fläche t1 und t2 überstrichene Fläche. Der Radius ist rot markiert, die Geschwindigkeit blau. Wir wissen: A= r^->Xv^->/2. Falls ihr das Kreuzprodukt zweier Vektoren noch nicht kennt, dürfte diese Herleitung für euch schwierig zu verstehen sein. Dann empfehle ich euch einfach zum nächsten Kapitel zu springen, oder für die nächsten ca. 1-2 Minuten eure Finger in eure Ohren zu stecken und laut zu singen. Ignoriert es einfach. Ihr braucht es dann nicht zu wissen. So, dann wollen wir mal: Der Drehimpuls L unseres Planeten bezüglich der Sonne ist L=m(r^->Xv^->) und der interessiert uns, weil in ihm r^->Xv^-> vorkommt, also das Doppelte unserer Fläche. Will ich wissen, um wie viel er sich verändert, dann muss ich die Ableitung des Drehimpulses ausrechnen. dl/dt=m(dr^->/dtXv^->+r^->Xdv^->/dt^->). Die Ableitung des Radius nach der Zeit, ist aber nun genau die Geschwindigkeit und die Ableitung der Geschwindigkeit nach der Zeit ist die Beschleunigung. Die Ableitung meines Drehimpulses ist also m(v^->Xv^->+r^->Xa^->). Da wir eine Zentralkraft haben, ist der Radius parallel zu a^-> und v^-> ist sowieso parallel zu v^->. Damit sind die beiden Kreuz-Produkte=0. Die Änderung des Drehimpulses ist also 0, das heißt, mein Drehimpuls ist also konstant. Ich kann ihn ohne Vektoren schreiben als m×r×v×sin alpha. Da also nun mein Drehimpuls und da sich die Masse nicht ändert, damit auch r^->Xv^-> konstant ist, ist auch die pro Zeit überstrichene Fläche r^->Xv^->/2=konstant. Wenn ihr sie noch drin habt, Finger wieder aus den Ohren und auf zum letzten Kapitel. Das 3. Keplersche Gesetz beschäftigt sich damit, wie die Umlaufzeiten verschiedener Planeten sich zueinander verhalten. Es lautet: Das Verhältnis der Umlaufzeiten Tx der Planeten im Quadrat ist gleich dem Verhältnis der großen Halbachsen ax hoch 3. Als Formel finde ich es einfacher zu verstehen: Wir betrachten 2 Planeten, Planet 1 und Planet 2, ihre Umlaufzeiten t1 und t2 und ihre Halbachsen a1 und a2. Dann gilt: T1²/T2²=a1³/a2³ oder anders gesagt: Für jeden Planeten in unserem Sonnensystem ergibt der Bruch T²/a³ denselben Wert. Ich kann also schreiben: T1²/a1³=T2²/a2³ usw. ist immer der Gleiche konstante Wert C. Dies kann man für einen Kreis, der ja immerhin ein Spezialfall einer Ellipse ist, sehr leicht herleiten und das wollen wir uns noch kurz ansehen. Wir benutzen unseren Lieblingsansatz: Die Gravitationskraft fungiert als Zentripetalkraft. Es gilt also: mv²/r=GmM/r². Wir kürzen ein kleines m und ein r hinaus und ersetzen v² durch Omega²r². Dann erhalten wir Omega²r²=GM/r. Mit Omega=2Pi/T wird daraus 4Pi²r³/T²=G×M. Wir bringen Pi² und r³ nach rechts, alles andere nach links und wir erhalten: T²/r³=4Pi²/G×M. Dieser Bruch hängt nicht von der Masse unseres Planeten ab. Das heißt, er ist für alle Planeten gleich und daher konstant. Damit habe ich meine Formel für den Kreis ja bewiesen, denn im Kreis ist die große Halbachse der Radius. Wir wollen noch mal wiederholen, was wir heute gelernt haben.

Die Planeten bewegen sich auf elliptischen Bahnen um die Sonne, die in einem der beiden Brennpunkte steht. Der Fahrstrahl des Planeten überstreicht bei gleicher Zeit immer eine gleich große Fläche.

Für das Verhältnis der Umlaufzeiten zu den großen Halbachsen der Planeten in unserem Sonnensystem gilt: T1²/T2²=a1³/a2³ oder T1²/a1³=T2²/a2³ usw. usw. =konstant. So, das war es schon wieder für heute. Ich hoffe ich konnte euch helfen. Vielen Dank fürs Zuschauen, vielleicht bis zum nächsten Mal, euer Kalle.

Informationen zum Video
7 Kommentare
  1. Default

    Also wenn ich die Geschwindigkeit der Erde ausrechnen will muss ich den Umfang eines Kreises berechnen und nicht die einer Ellipse, obwohl die Erde sich in einer Ellipsenbahn befindet?! Warum? Ansonsten alles suppi erklärt :) #Kallebischtderbeschte

    Von Serkan 21, vor fast 2 Jahren
  2. 1370520972957

    wow, danke habs jetzt verstanden ^^

    Von Sralm, vor etwa 2 Jahren
  3. Default

    Ich habe es super verstanden! und ich bin erst in der 6. Klasse.
    PS. Das lag am Video.

    Von Markus Koch, vor fast 3 Jahren
  4. Ich foto1

    Danke

    Von Tim V., vor fast 3 Jahren
  5. Nikolai

    @Tim: Die große Halbachse a der Erde beträgt ungefähr 149600000km. Na und die Umlaufdauer T die kennst du doch - ein Jahr!
    Lg

    Von Nikolai P., vor fast 3 Jahren
  1. Ich foto1

    Was ist denn a bzw T von der Erde??

    Von Tim V., vor fast 3 Jahren
  2. 644000 4916608436147 1148167494 n

    Sehr gutes Video! Ich habe es sofort verstanden und das ist bei mir selten! ;)

    Von H Egal, vor etwa 3 Jahren
Mehr Kommentare