Advent, Advent, 1 Monat weihnachtliche Laufzeit geschenkt.

Nicht bis zur Bescherung warten, Aktion nur gültig bis zum 18.12.2016!

Textversion des Videos

Transkript Bohr'sches Atommodell

Bohr'sches Atommodell

Hallo und herzlich Willkommen zum Video über das Bohr’sche Atommodell.

Atome sind die Bausteine der Materie, aber lange Zeit wusste man nur wenig über ihre Eigenschaften. Bohr revolutionierte unser Verständnis, indem er Ruhtherfords klassisches Modell mithilfe seiner Postulate weiterentwickelte. Und wie genau diese lauten, wirst du in diesem Video lernen. Dazu wiederholen wir zunächst das Rutherfordsche Atommodell und Balmers Formel zur Beschreibung der Spektrallinien im Wasserstoffatom. Beides zusammen brachte Bohr darauf, seine zwei Postulate zu formulieren. Mithilfe dieser Postulate werden wir dann die Bahnradien und Energieniveaus von Elektronen herleiten, was damals einen großen Erfolg darstellte. Zum Abschluss werden wir noch auf die Grenzen des Modells eingehen. Na dann los.

Rutherfordsches Atommodell

Ernest Rutherford stellte im Jahre 1909 fest, dass das Atom selbst aus kleineren Teilchen besteht. Aus den Resultaten seiner Experimente schloss Rutherford, dass das Atom aus einem positiv geladenen Kern besteht, um das - aufgrund der Coulomb-Anziehung - negativ geladene Elektronen kreisen. Genauso wie Planeten um die Sonne. Sein Modell hatte jedoch zwei Schwächen: Zum einen wusste man, dass kreisende Ladungen elektromagnetische Strahlung verursachen und dabei Energie abgeben. Demnach müssten die Elektronen langsamer werden und in den Kern fallen, was ja nicht so ist. Zum zweiten konnte das Modell die gemessenen Spektrallinien der Atome nicht erklären.

Spektrallinien

Wenn man Wasserstoff analysiert, stellt man nämlich fest, dass es Licht absorbiert und gleichzeitig auch wieder emittiert. Der Schweizer Physiker Johann Balmer bestimmte im Jahre 1885 die Wellenlängen dieser Strahlung. Hier seht ihr, wie das Spektrum von weißem Licht aussieht, in dem alle sichtbaren Farben vorkommen. Schaut man sich jedoch Licht an, welches von Wasserstoff zurückgestrahlt wird, so findet man nur diskrete Linien.

Balmer fand auch die Formel, um die Wellenlänge Lambda der auftretenden Strahlung zu beschreiben: Sie lautet Lambda ist gleich B mal n Quadrat geteilt durch n Quadrat minus vier. B ist dabei die Balmer-Konstante und entspricht rund 3,645 mal 10 hoch minus 7 Meter. Das Rutherford’sche Atommodell konnte diese diskreten Wellenlängen nicht erklären. Und an der Stelle kam Bohr ins Spiel.

Bohr’sche Postulate

In seinem Lösungsversuch stellte der dänische Physiker Niels Bohr drei Postulate zum Atomaufbau auf: Das erste Postulat besagt: “Die Energie eines Elektrons im Atom kann nur diskrete Werte E_n annehmen.” Diese entsprechen den verschiedenen Umlaufbahnen und Bohr nahm an, dass diese Bahnen stabil seien und somit keine elektromagnetische Strahlung auftritt. Der Index n nummeriert die immer größer werdenen Energien.

Sein zweites Postulat erklärt die gemessenen Spektrallinien. “Die Frequenz und Wellenlänge der ausgesandten elektromagnetischen Strahlung ergibt sich aus der Energiedifferenz zwischen dem Ausgangs- und dem Endzustand.” Wird ein Elektron durch Licht angeregt, so springt es auf eine größere Umlaufbahn mit höherer Energie. Nach einiger Zeit springt es wieder zurück und gibt die Energiedifferenz als Photon wieder ab.

Mathematisch beschrieben heißt das, dass die Energie eines Photons gleich der Energieunterschied zwischen dem Energieniveau n und m ist. Mit dem Wissen, dass die Photonenenergie das Planksche Wirkungsquantum h mal die Lichtfrequenz f ist ergibt sich diese Gleichung. Bohr konnte seine Postulate nicht genauer begründen, aber sie ändern das Rutherford’sche Atommodell gerade so ab, dass seine beiden Probleme beseitigt werden.

Energieniveaus und Bahnradius

Mit Hilfe des dritten Bohrschen Postulates können schließlich die genauen Energiewerte berechnet werden. Demnach sind die Energien E_n gleich minus 13,6 Elektronenvolt geteilt durch n Quadrat, wobei n wieder eine ganz bestimmte Bahn meint. Für den Übergang eines Elektrons von der n-ten in die m-te Bahn ist die Energie des ausgetrahlten Photons dann genau minus 13,6 Elektronenvolt mal eins geteilt durch n Quadrat minus eins geteilt durch m Quadrat.

Aus der Photonenenergie lässt sich dann die zugehörige Wellenlänge Lambda bestimmen. Lambda ist gleich B viertel mal n Quadrat mal m Quadrat geteilt durch n Quadrat minus m Quadrat. Dabei ist B die Balmer-Konstante, die wir bereits kennen. Diese Formel wird auch als Rydberg-Formel bezeichnet. Setzen wir m gleich zwei ein, erhalten wir gerade wieder die Balmer-Formel.

Das bedeutet, dass Balmer nur einen Teil des Wasserstoffspektrums fand, nämlich die Übergänge zum zweiten Energieniveau. Das lag daran, dass nur diese Wellenlängen im Bereich des sichtbaren Lichts liegen. Hier siehst du ganz links die Übergänge zum Energieniveau mit n gleich 1, dann kommen die Linien von Balmer als Übergänge zum zweiten Energieniveau und so weiter.

Neben diesem Erfolg konnte Bohr sogar einen Radius für das Atom berechnen. Dazu nahm er an, dass das Elektron sich auf einer Kreisbahn um den Kern bewegt. Der kleinste Radius r_1 wird demnach als Bohr’scher Atomradius bezeichnet und beträgt rund 5,29 mal 10 hoch minus 11 Metern. Damit war Bohrs Modell in der Lage, die Größenordnung von Atomen vorherzusagen.

Grenzen des Bohr’schen Atommodells

Trotz dieser Erfolge hatte das Bohr’sche Atommodell noch einige Grenzen. Zum Einen konnte nur das Spektrum des Wasserstoffatoms akkurat beschrieben wird - für andere Elemente liefern die Postulate teilweise falsche Vorhersagen. Desweiteren stehen die Postulate im Widerspruch zur klassischen Elektrodynamik, wonach um den Atomkern kreisende Elektronen eigentlich Energie abstrahlen müssen. Beide Schwächen wurden später im Rahmen der Quantentheorie durch das Orbitalmodell korrigiert. Bis dahin war das Bohr’sche Atommodell jedoch ein wichtiger Schritt zum besseren Verständnis von Atomen und Molekülen.

Zusammenfassung

Fassen wir also noch einmal zusammen. Wir haben das Rutherford’sche Atommodell wiederholt, das die diskreten Spektren der Atome nicht erklären konnte. Insbesondere nicht die von Balmer gefundenen Formeln. Niels Bohr stellte drei Postulate auf, um die Probleme des Rutherfordschen Atommodells zu beheben. Dabei wählte Bohr die erlaubten Energien gerade so, dass die Energiedifferenzen mit den von Balmer und Rydberg gefundenen Formeln für die Wellenlänge im Wasserstoffatom übereinstimmten. Zugleich konnte er den Radius der Bahnen bestimmen. Trotz dieser Erfolge weist das Modell Schwächen auf: Die Spektren anderer Atome können nur unzureichend beschrieben werden und Bohr konnte noch immer nicht erklären, warum die kreisenden Elektronen keine Energie abstrahlen.

Das war’s zum Bohr’schen Atommodell. Bis zum nächsten Mal.

Informationen zum Video